使用通用经济风险工具(VERT)的美国核电厂绩效评估

Jaden C. Miller, S. Ercanbrack, C. Pope
{"title":"使用通用经济风险工具(VERT)的美国核电厂绩效评估","authors":"Jaden C. Miller, S. Ercanbrack, C. Pope","doi":"10.1115/icone28-65769","DOIUrl":null,"url":null,"abstract":"\n This paper addresses the use of a new nuclear power plant performance risk analysis tool. The new tool is called Versatile Economic Risk Tool (VERT). VERT couples Idaho National Laboratory’s SAPHIRE and RAVEN software packages. SAPHIRE is traditionally used for performing probabilistic risk assessment and RAVEN is a multi-purpose uncertainty quantification, regression analysis, probabilistic risk assessment, data analysis and model optimization software framework. Using fault tree models, degradation models, reliability data, and economic information, VERT can assess relative system performance risks as a function of time. Risk can be quantified in megawatt hours (MWh) which can be converted to dollars. To demonstrate the value of VERT, generic pressurized water reactor and boiling water reactor fault tree models were developed along with time dependent reliability data to investigate the plant systems, structures, and components that impacted performance from the year 1980 to 2020. The results confirm the overall notion that US nuclear power plant industry operational performance has been improving since 1980. More importantly, the results identify equipment that negatively or positively impact performance. Thus, using VERT, individual plant operators can target systems, structures, and components that merit greater attention from a performance perspective.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"U.S. Nuclear Power Plant Performance Assessment Using the Versatile Economic Risk Tool (VERT)\",\"authors\":\"Jaden C. Miller, S. Ercanbrack, C. Pope\",\"doi\":\"10.1115/icone28-65769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper addresses the use of a new nuclear power plant performance risk analysis tool. The new tool is called Versatile Economic Risk Tool (VERT). VERT couples Idaho National Laboratory’s SAPHIRE and RAVEN software packages. SAPHIRE is traditionally used for performing probabilistic risk assessment and RAVEN is a multi-purpose uncertainty quantification, regression analysis, probabilistic risk assessment, data analysis and model optimization software framework. Using fault tree models, degradation models, reliability data, and economic information, VERT can assess relative system performance risks as a function of time. Risk can be quantified in megawatt hours (MWh) which can be converted to dollars. To demonstrate the value of VERT, generic pressurized water reactor and boiling water reactor fault tree models were developed along with time dependent reliability data to investigate the plant systems, structures, and components that impacted performance from the year 1980 to 2020. The results confirm the overall notion that US nuclear power plant industry operational performance has been improving since 1980. More importantly, the results identify equipment that negatively or positively impact performance. Thus, using VERT, individual plant operators can target systems, structures, and components that merit greater attention from a performance perspective.\",\"PeriodicalId\":108609,\"journal\":{\"name\":\"Volume 4: Student Paper Competition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone28-65769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone28-65769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的核电厂性能风险分析工具的使用。这个新工具被称为多功能经济风险工具(VERT)。VERT结合了爱达荷国家实验室的sapphire和RAVEN软件包。sapphire传统上用于进行概率风险评估,RAVEN是一个多用途的不确定性量化、回归分析、概率风险评估、数据分析和模型优化软件框架。利用故障树模型、退化模型、可靠性数据和经济信息,VERT可以评估作为时间函数的相对系统性能风险。风险可以用兆瓦时(MWh)来量化,这可以转换成美元。为了证明VERT的价值,通用的压水反应堆和沸水反应堆故障树模型与时间相关的可靠性数据一起开发,以调查1980年至2020年期间影响性能的工厂系统,结构和部件。研究结果证实,自1980年以来,美国核电站行业的运营绩效一直在改善。更重要的是,结果确定了对性能产生负面或积极影响的设备。因此,使用VERT,单个工厂操作员可以从性能角度瞄准值得更多关注的系统、结构和组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
U.S. Nuclear Power Plant Performance Assessment Using the Versatile Economic Risk Tool (VERT)
This paper addresses the use of a new nuclear power plant performance risk analysis tool. The new tool is called Versatile Economic Risk Tool (VERT). VERT couples Idaho National Laboratory’s SAPHIRE and RAVEN software packages. SAPHIRE is traditionally used for performing probabilistic risk assessment and RAVEN is a multi-purpose uncertainty quantification, regression analysis, probabilistic risk assessment, data analysis and model optimization software framework. Using fault tree models, degradation models, reliability data, and economic information, VERT can assess relative system performance risks as a function of time. Risk can be quantified in megawatt hours (MWh) which can be converted to dollars. To demonstrate the value of VERT, generic pressurized water reactor and boiling water reactor fault tree models were developed along with time dependent reliability data to investigate the plant systems, structures, and components that impacted performance from the year 1980 to 2020. The results confirm the overall notion that US nuclear power plant industry operational performance has been improving since 1980. More importantly, the results identify equipment that negatively or positively impact performance. Thus, using VERT, individual plant operators can target systems, structures, and components that merit greater attention from a performance perspective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信