CrystalsPub Date : 2024-09-18DOI: 10.3390/cryst14090818
Numair Elahi, Constantinos D. Zeinalipour-Yazdi
{"title":"Recent Advances in Ammonia Synthesis Modeling and Experiments on Metal Nitrides and Other Catalytic Surfaces","authors":"Numair Elahi, Constantinos D. Zeinalipour-Yazdi","doi":"10.3390/cryst14090818","DOIUrl":"https://doi.org/10.3390/cryst14090818","url":null,"abstract":"In this review, we explore the recent progress in catalytic materials for the ammonia syntheses that are based on metal nitrides and other catalytic surfaces. It comprises a detailed overlook of the various techniques used in ammonia synthesis research and the state-of-the-art modeling techniques employed to investigate new reaction mechanisms and more efficient processes for sustainable ammonia synthesis production. The review is discussed in the context of the reaction mechanisms developed and the recent progress that has been made with respect to thermal, electrochemical, and photocatalytic ammonia synthesis.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"17 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystalsPub Date : 2024-09-18DOI: 10.3390/cryst14090817
Shoroog Alraddadi
{"title":"Crystal Structure, Microstructure, and Dielectric and Electrical Properties of Ceramic Material Prepared Using Volcanic Ash","authors":"Shoroog Alraddadi","doi":"10.3390/cryst14090817","DOIUrl":"https://doi.org/10.3390/cryst14090817","url":null,"abstract":"In the present work, the electrical and dielectric properties of ceramic samples prepared from volcanic ash were investigated. For this purpose, ceramic samples were prepared using milled volcanic ash with a binder material at a sintering temperature of 950 °C for 2 h. The chemical content of the milled volcanic ash was investigated using XRF. Differential thermal analysis and thermogravimetry were performed to determine the firing conditions. The crystalline phases and microstructures of the ceramic samples were investigated using XRD and SEM, respectively. Finally, the electrical and dielectric properties of the obtained samples were evaluated at a frequency ranging from 1 × 102 to 4 × 106 Hz and temperatures ranging from room temperature to 800 °C. The XRD results revealed that the ceramic samples contained three main phases: albite, hematite, and augite. Moreover, the microstructures of the samples exhibited a large crystal size with a dense surface. The conductivities and dielectric constants of the samples remained stable up to 500 °C. The real and imaginary parts of the dielectric constant decreased with an increase in frequency and increased with an increase in temperature. The results indicated that ceramics based on volcanic ash are promising for use in technological applications such as high-voltage power insulators.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"10 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystalsPub Date : 2024-09-17DOI: 10.3390/cryst14090815
Oliver Tschauner
{"title":"General Trends in the Compression of Glasses and Liquids","authors":"Oliver Tschauner","doi":"10.3390/cryst14090815","DOIUrl":"https://doi.org/10.3390/cryst14090815","url":null,"abstract":"The present work relates the isothermal volumes of silicate glasses and melts to the combined ionic volumes of their chemical constituents. The relation is an extension of a relation that has already been established for crystalline oxides, silicates, alumosilicates, and other materials that have O2− as a constituent anion. The relation provides constraints on bond coordination, indicates pressure-induced changes in coordination in melts and glasses and interatomic distances, and quantifies the extent of transitory regions in pressure-induced coordination changes.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"203 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystalsPub Date : 2024-09-17DOI: 10.3390/cryst14090816
Mile Djurdjevic, Srecko Manasijevic, Aleksandra Patarić, Srecko Stopic, Marija Mihailović
{"title":"Impact of Mg on the Feeding Ability of Cast Al–Si7–Mg(0_0.2_0.4_0.6) Alloys","authors":"Mile Djurdjevic, Srecko Manasijevic, Aleksandra Patarić, Srecko Stopic, Marija Mihailović","doi":"10.3390/cryst14090816","DOIUrl":"https://doi.org/10.3390/cryst14090816","url":null,"abstract":"The demand for high-performance Al–Si casting alloys is driven by their mechanical properties, making them popular in automotive, aerospace, and engineering industries. These alloys, especially hypoeutectic Al–Si–Mg, offer benefits like high fluidity, low thermal expansion, and good corrosion resistance. Silicon and magnesium primarily define their microstructure and mechanical properties. Silicon enhances fluidity, while magnesium improves strength and fatigue resistance. However, challenges like shrinkage porosity persist during solidification. Understanding solidification feeding regions is crucial, influenced by factors such as chemical composition, solidification characteristics, and casting design. This study investigates magnesium’s influence on feeding ability in hypoeutectic Al–Si7–Mg alloys through experimental tests. Increasing magnesium content from 0% to 0.6% affects the interdendritic and burst feeding regions. This could impact shrinkage porosity formation. The “Sand Hourglass” test results indicate a rise in porosity levels with higher magnesium content, which is linked to the narrowing of interdendritic channels and the formation of magnesium-rich intermetallic compounds. These changes hinder the liquid metal flow, worsening shrinkage porosity. Therefore, magnesium’s role in expanding the interdendritic region is a key factor in developing porosity in cast hypoeutectic Al–Si7–Mg alloys. This study highlights that porosity levels increase from 0% in magnesium-free Al–Si7 to 0.84% in Al–Si7–Mg0.6, underscoring magnesium’s significant impact on the occurrence of porosity in these alloys.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"119 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystalsPub Date : 2024-09-14DOI: 10.3390/cryst14090811
Abdulrahman Mohabbat, Jasmin Salama, Philipp Seiffert, István Boldog, Christoph Janiak
{"title":"Single-Crystal Structure Analysis of Dicarboxamides: Impact of Heteroatoms on Hydrogen Bonding of Carboxamide Groups","authors":"Abdulrahman Mohabbat, Jasmin Salama, Philipp Seiffert, István Boldog, Christoph Janiak","doi":"10.3390/cryst14090811","DOIUrl":"https://doi.org/10.3390/cryst14090811","url":null,"abstract":"This research examines how heteroatoms in a six- or five-membered pyridine, thiophene or furan ring spacer between two carboxamide groups influence the hydrogen bonding for advancements in supramolecular chemistry and drug development. The solvent-free crystal structures of 3,5-pyridinedicarboxamide (PDC), 2,5-thiophenedicarboxamide (TDC) and 2,5-furandicarboxamide (FDC-subl, crystallized by sublimation), and the monohydrate structure of FDC-solv (crystallized from methanol) are described with the hydrogen-bonding analyzed by the Etter graph-set notation. The carbon atoms of the amide groups form an angle of 121° in PDC, 151° in TDC, 137° in FDC-solv and 135° in FDC-subl with the ring centroid. Only in the structure of PDC does the heteroatom act as an H-bond acceptor as part of a C11(6) chain. In TDC and FDC, the heteroatoms do not interact with the amide -NH2 groups.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"1 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystalsPub Date : 2024-09-14DOI: 10.3390/cryst14090814
Violeta Jevtovic, Luka Golubović, Odeh A. O. Alshammari, Munirah Sulaiman Alhar, Tahani Y. A. Alanazi, Violeta Rakic, Rakesh Ganguly, Jasmina Dimitrić Marković, Aleksandra Rakić, Dušan Dimić
{"title":"The Counterion (SO42− and NO3−) Effect on Crystallographic, Quantum-Chemical, Protein-, and DNA-Binding Properties of Two Novel Copper(II)–Pyridoxal-Aminoguanidine Complexes","authors":"Violeta Jevtovic, Luka Golubović, Odeh A. O. Alshammari, Munirah Sulaiman Alhar, Tahani Y. A. Alanazi, Violeta Rakic, Rakesh Ganguly, Jasmina Dimitrić Marković, Aleksandra Rakić, Dušan Dimić","doi":"10.3390/cryst14090814","DOIUrl":"https://doi.org/10.3390/cryst14090814","url":null,"abstract":"New Cu(II) complexes with pyridoxal-aminoguanidine (PLAG) ligands and different counterions (SO42− and NO3−) were prepared and their crystal structures were solved by the X-ray crystallography. The geometries of the obtained complexes significantly depended on the counterions, leading to the square-pyramidal structure of [Cu(PLAG)NO3H2O]NO3 (complex 1) and square-planar structure of [Cu(PLAG)H2O]SO4 (complex 2). The intermolecular interactions were examined using the Hirshfeld surface analysis. The theoretical structures of these complexes were obtained by optimization at the B3LYP/6-311++G(d,p)(H,C,N,O,S)/LanL2DZ(Cu) level of theory. The Quantum Theory of Atoms in Molecules (QTAIM) was applied to assess the strength and type of the intramolecular interactions and the overall stability of the structures. The interactions between the complexes and transport proteins (human serum albumin (HSA)) and calf thymus DNA (CT-DNA) were examined by spectrofluorometric/spectrophotometric titration and molecular docking. The binding mechanism to DNA was assessed by potassium iodide quenching experiments. The importance of counterions for binding was shown by comparing the experimental and theoretical results and the examination of binding at the molecular level.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"21 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystalsPub Date : 2024-09-14DOI: 10.3390/cryst14090812
Turgut Yilmaz, Xiao Tong, Zhongwei Dai, Jerzy T. Sadowski, Genda Gu, Kenya Shimada, Sooyeon Hwang, Kim Kisslinger, Elio Vescovo, Boris Sinkovic
{"title":"Surface Electronic Structure of Cr Doped Bi2Se3 Single Crystals","authors":"Turgut Yilmaz, Xiao Tong, Zhongwei Dai, Jerzy T. Sadowski, Genda Gu, Kenya Shimada, Sooyeon Hwang, Kim Kisslinger, Elio Vescovo, Boris Sinkovic","doi":"10.3390/cryst14090812","DOIUrl":"https://doi.org/10.3390/cryst14090812","url":null,"abstract":"Here, by using angle-resolved photoemission spectroscopy, we showed that Bi2−xCrxSe3 single crystals have a distinctly well-defined band structure with a large bulk band gap and undistorted topological surface states. These spectral features are unlike their thin film forms in which a large nonmagnetic gap with a distorted band structure was reported. We further provide laser-based high resolution photoemission data which reveal a Dirac point gap even in the pristine sample. The gap becomes more pronounced with Cr doping into the bulk of Bi2Se3. These observations show that the Dirac point can be modified by the magnetic impurities as well as the light source.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"43 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystalsPub Date : 2024-09-14DOI: 10.3390/cryst14090813
Iván Ruiz-Ardanaz, Esther Lasheras, Adrián Durán
{"title":"The Enamelled Tiles of Olite’s Castle (Spain): Characterization, Provenance, and Manufacture Technology","authors":"Iván Ruiz-Ardanaz, Esther Lasheras, Adrián Durán","doi":"10.3390/cryst14090813","DOIUrl":"https://doi.org/10.3390/cryst14090813","url":null,"abstract":"The objective of this study was to determine the authorship, provenance, and technology of the mudejar enamelled tiles from the Olite Castle (northern Spain, 14th century). According to previous knowledge, Olite’s enamelled tiles had been manufactured in Manises (Valencia, Spain). The analysis of ceramic pastes revealed the existence of two different chemical compositions, suggesting the use of two different clay sources, probably one from the Tudela area, and another from the Tafalla–Olite area. Those probably made in the Tudela area stood out with a higher diopside (CaMgSi2O6) content. Those probably made in the Tafalla–Olite area stood out for their calcium-bearing minerals, such as calcite (CaCO3) or gehlenite (Ca2Al(AlSi)O7). On this basis, production in Manises has been ruled out. However, it is highly probable that the artisans of Manises would have led the production from Tudela. The study of the firing temperatures and composition of the enamels indicated that the production methods and materials used in Tafalla–Olite (800–850 °C) and Tudela (higher than 900 °C) were different, reflecting the influence of local and Manises artisans, respectively. In Olite tiles, enamel was applied following recipes from the 14th and 15th centuries.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"1 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystalsPub Date : 2024-09-13DOI: 10.3390/cryst14090809
Hengzheng Li, Shuai Chen, Yang Chen, Yan Liu, Zichen Tao, Yinghe Qin, Conghu Liu
{"title":"The Effects of Laser Parameters on the Wear Resistance of a Cu/BN Remelted Layer","authors":"Hengzheng Li, Shuai Chen, Yang Chen, Yan Liu, Zichen Tao, Yinghe Qin, Conghu Liu","doi":"10.3390/cryst14090809","DOIUrl":"https://doi.org/10.3390/cryst14090809","url":null,"abstract":"In order to improve the wear resistance of copper and enhance the surface properties of copper parts, this article uses BN nanoparticles as a reinforcing phase and the laser remelting method to prepare a Cu/BN remelted layer on the copper surface. The surface morphology, crystal structure, microhardness, and wear resistance of the samples were tested and characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), a microhardness tester, and a friction and wear tester. The effects of laser frequency, pulse width, and energy density on the surface morphology and wear resistance of the samples were analyzed and studied, and the effects of the laser parameters on the properties of the Cu/BN remelted layer were discussed. The research results indicate that laser frequency, pulse width, and energy density have a direct impact on the surface morphology and properties of the Cu/BN remelted layer, but the impact mechanism by the above parameters on the remelted layer is different. The effects of laser frequency on the remelted layer are caused by changes in the overlap mode of the remelting points, while laser pulse width and energy density are achieved through changes in remelting intensity. When the laser frequency is 10 Hz, the pulse width is 10 ms, and the energy density is 165.8 J/mm2, the Cu/BN remelted layer has better surface properties.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"12 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystalsPub Date : 2024-09-13DOI: 10.3390/cryst14090810
Zhanwang Zhou, Zhenyu Zhao, Jin He, Ruikang Shi
{"title":"Pulsed Laser Polishing of Zirconia Ceramic Microcrack Generation Mechanism and Size Characterization Study","authors":"Zhanwang Zhou, Zhenyu Zhao, Jin He, Ruikang Shi","doi":"10.3390/cryst14090810","DOIUrl":"https://doi.org/10.3390/cryst14090810","url":null,"abstract":"In order to study the mechanism of microcrack generation in the process of pulsed laser polishing of zirconia ceramics and the influence of laser polishing process parameters on the surface temperature and surface stress, this paper establishes a finite element computational model of pulsed laser polishing of zirconia ceramics based on the COMSOL Multiphysics multi-physics field simulation software. Firstly, in the process of establishing the finite element model, the temperature field and stress field coupling is used to analyze the temperature field and stress field changes during the laser polishing process, which reveals the microcrack generation mechanism and size characteristics of zirconia ceramics in the process of pulsed laser polishing. Secondly, through parameterized scanning, the variation rules of surface temperature and surface stress were studied under different process parameters of laser power, scanning speed, pulse frequency and pulse width. Finally, the validity of the finite element calculation model is verified by the pulsed laser polishing zirconia ceramics experiment. The results show that, in a certain energy range, the high-energy laser beam can effectively reduce the surface roughness of the material, and with the increase in the time of laser action on the surface layer of the material, it will cause the temperature and thermal stress of the surface layer of the material to continue to accumulate, and when the stress value exceeds the yield limit of the material, cracks will form in the surface layer of the material; because the laser power, scanning speed, pulse frequency and pulse width are used to affect the laser energy density, and then, the pulse width will be affected by the process parameters of the laser energy density, and thus the surface temperature and thermal stress of the surface layer of the material. Because the laser power, scanning speed, pulse frequency and pulse width all affect the thermal stress on the material surface by influencing the laser energy density acting on the material surface, the laser energy density is the main influencing factor of the dimensional characteristics of the microcracks. In addition, the microcrack width and depth will increase when the laser energy density acting on the material surface layer increases.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"4 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}