用于光子学的锗单晶体

IF 2.4 4区 材料科学 Q2 CRYSTALLOGRAPHY
Crystals Pub Date : 2024-09-09 DOI:10.3390/cryst14090796
Grigory Kropotov, Vladimir Rogalin, Ivan Kaplunov
{"title":"用于光子学的锗单晶体","authors":"Grigory Kropotov, Vladimir Rogalin, Ivan Kaplunov","doi":"10.3390/cryst14090796","DOIUrl":null,"url":null,"abstract":"Germanium (Ge) is a system-forming material of IR photonics for the atmospheric transparency window of 8–14 µm. For optics of the 3–5 µm range, more widespread silicon (Si), which has phonon absorption bands in the long-wave region, is predominantly used. A technology for growing Ge single crystals has been developed, allowing the production of precision optical parts up to 500 mm in diameter. Ge is used primarily for the production of transparent optical parts for thermal imaging devices in the 8–14 µm range. In addition, germanium components are widely used in a large number of optical devices where such properties as mechanical strength, good thermal properties, and climatic resistance are required. A very important area of application of germanium is nonlinear optics, primarily acousto-optics. The influence of doping impurities and temperature on the absorption of IR radiation in germanium is considered in detail. The properties of germanium photodetectors are reported, primarily on the effect of photon drag of holes. Optical properties in the THz range are considered. The features of optical properties for all five stable isotopes of germanium are studied. The isotopic shift of absorption bands in the IR region, caused by phonon phenomena, which was discovered by the authors for the first time, is considered.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Germanium Single Crystals for Photonics\",\"authors\":\"Grigory Kropotov, Vladimir Rogalin, Ivan Kaplunov\",\"doi\":\"10.3390/cryst14090796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Germanium (Ge) is a system-forming material of IR photonics for the atmospheric transparency window of 8–14 µm. For optics of the 3–5 µm range, more widespread silicon (Si), which has phonon absorption bands in the long-wave region, is predominantly used. A technology for growing Ge single crystals has been developed, allowing the production of precision optical parts up to 500 mm in diameter. Ge is used primarily for the production of transparent optical parts for thermal imaging devices in the 8–14 µm range. In addition, germanium components are widely used in a large number of optical devices where such properties as mechanical strength, good thermal properties, and climatic resistance are required. A very important area of application of germanium is nonlinear optics, primarily acousto-optics. The influence of doping impurities and temperature on the absorption of IR radiation in germanium is considered in detail. The properties of germanium photodetectors are reported, primarily on the effect of photon drag of holes. Optical properties in the THz range are considered. The features of optical properties for all five stable isotopes of germanium are studied. The isotopic shift of absorption bands in the IR region, caused by phonon phenomena, which was discovered by the authors for the first time, is considered.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14090796\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090796","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

锗(Ge)是红外光学的系统形成材料,用于 8-14 µm 的大气透明度窗口。在 3-5 µm 范围内的光学元件中,主要使用的是在长波区域具有声子吸收带的更常见的硅(Si)。目前已开发出一种生长 Ge 单晶体的技术,可生产直径达 500 毫米的精密光学部件。锗主要用于生产 8-14 µm 范围内热成像设备的透明光学部件。此外,锗元件还广泛应用于大量需要机械强度、良好热性能和耐气候性等特性的光学设备中。锗的一个非常重要的应用领域是非线性光学,主要是声光学。本文详细探讨了掺杂杂质和温度对锗吸收红外辐射的影响。报告了锗光电探测器的特性,主要涉及空穴的光子阻力效应。还考虑了太赫兹范围内的光学特性。研究了锗所有五种稳定同位素的光学特性特征。作者首次发现了由声子现象引起的红外区域吸收带的同位素偏移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Germanium Single Crystals for Photonics
Germanium (Ge) is a system-forming material of IR photonics for the atmospheric transparency window of 8–14 µm. For optics of the 3–5 µm range, more widespread silicon (Si), which has phonon absorption bands in the long-wave region, is predominantly used. A technology for growing Ge single crystals has been developed, allowing the production of precision optical parts up to 500 mm in diameter. Ge is used primarily for the production of transparent optical parts for thermal imaging devices in the 8–14 µm range. In addition, germanium components are widely used in a large number of optical devices where such properties as mechanical strength, good thermal properties, and climatic resistance are required. A very important area of application of germanium is nonlinear optics, primarily acousto-optics. The influence of doping impurities and temperature on the absorption of IR radiation in germanium is considered in detail. The properties of germanium photodetectors are reported, primarily on the effect of photon drag of holes. Optical properties in the THz range are considered. The features of optical properties for all five stable isotopes of germanium are studied. The isotopic shift of absorption bands in the IR region, caused by phonon phenomena, which was discovered by the authors for the first time, is considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystals
Crystals CRYSTALLOGRAPHYMATERIALS SCIENCE, MULTIDIS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.20
自引率
11.10%
发文量
1527
审稿时长
16.12 days
期刊介绍: Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a  forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信