Current cancer drug targets最新文献

筛选
英文 中文
Decoding Metastasis: From Cell Death to Fusion in Cancer Progression. 解码转移:癌症进展中的细胞死亡与融合。
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2024-07-15 DOI: 10.2174/0115680096308596240620055942
Evgeniya V Kaigorodova, Alexey V Kozik, Maxim Y Grishchenko
{"title":"Decoding Metastasis: From Cell Death to Fusion in Cancer Progression.","authors":"Evgeniya V Kaigorodova, Alexey V Kozik, Maxim Y Grishchenko","doi":"10.2174/0115680096308596240620055942","DOIUrl":"https://doi.org/10.2174/0115680096308596240620055942","url":null,"abstract":"<p><p>Metastasis is one of the key concepts in modern oncology, which connects the movement of cancer cells in the body with changes in their characteristics and functions. The review examines the main aspects of metastasis, including theories, facts and discoveries that help to better understand this phenomenon and develop new approaches to its treatment. In this article, we also proposed the theory of cell fusion with the formation of hybrid cells as one of the factors of metastasis. We believe that the fusion of tumor cells with other types of motile cells (leukocytes and bone marrow progenitor cells) may represent an additional mechanism of tumor spread. Cells of bone marrow origin, including cells of the myeloid and macrophage lineages, are the best candidates for heterotypic fusion in regenerative conditions. Events such as cell fusion may play a role in tumor dedifferentiation and progression. We presented a number of arguments and data from our own research that speak in favor of the proposed theory. It should be noted that if the fusion of a normal cell with a tumor cell is one of the possible triggers of tumorigenesis and cancer spread, the mechanisms underlying this process may provide possible new targets for treatment. Therefore, their analysis will expand our arsenal of therapeutic tools by adding completely new targets - cell signaling molecules - and will provide the impetus for reconsidering the tumor microenvironment from a different angle.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GAPVD1 Promotes the Proliferation of Triple-Negative Breast Cancer Cells by Regulating the ERK/MAPK Signaling Pathway. GAPVD1 通过调节 ERK/MAPK 信号通路促进三阴性乳腺癌细胞增殖
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2024-07-15 DOI: 10.2174/0115680096303983240616191051
Lu Wang, Lifen Zhang, Pei Luo, Zeyu Xia, Shan Shao, Qian Ning, Shanzhi Gu, Xinhan Zhao, Minna Luo
{"title":"GAPVD1 Promotes the Proliferation of Triple-Negative Breast Cancer Cells by Regulating the ERK/MAPK Signaling Pathway.","authors":"Lu Wang, Lifen Zhang, Pei Luo, Zeyu Xia, Shan Shao, Qian Ning, Shanzhi Gu, Xinhan Zhao, Minna Luo","doi":"10.2174/0115680096303983240616191051","DOIUrl":"https://doi.org/10.2174/0115680096303983240616191051","url":null,"abstract":"<p><strong>Background: </strong>Triple-Negative Breast Cancer (TNBC) accounts for 15-20% of all breast cancers and approximately 50% of breast cancer deaths. Chemotherapy remains the mainstay of systemic treatment due to the lack of effective therapy targets. Thus, more studies are urgently needed to identify new therapeutic targets in TNBC patients.</p><p><strong>Methods: </strong>GAPVD1 expression and prognosis value in breast cancer samples were explored in The Cancer Genome Atlas database (TCGA). GAPVD1 knockdown and overexpression TNBC cell lines were constructed. CCK-8 and colony formation assays were performed to detect cell viability. Flow cytometry analysis was performed to detect cell cycle variation. Western blotting was conducted to determine the levels of target genes. Finally, an enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed.</p><p><strong>Results: </strong>GAPVD1 is overexpressed in breast cancer tissues and predicts poor prognosis. In vitro experiments demonstrated that GAPVD1 is correlated with cell proliferation and the cell cycle of TNBC cells. Mechanistically, alteration in GAPVD1 expression was found to be associated with cell cycle-related proteins PCNA, Cyclin A, and the activity of the ERK/MAPK signaling pathway. Consistent with these findings, enrichment analysis of GAPVD1-involving partners and signaling pathways revealed that the cellular biosynthetic process, macromolecule biosynthetic process, and cell cycle signaling are related to GAPVD1. In vivo experiment demonstrated that GAPVD1 inhibition impedes tumor growth and expression of cell cyclerelated proteins.</p><p><strong>Conclusion: </strong>Taken together, our results indicate that GAPVD1 may participate in TNBC cell growth by regulating the cell cycle and ERK/MAPK signaling pathway.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Envafolimab Inhibits the Growth of Gastric Cancer Cells with Low PD-L1 Expression through the DDX20/NF-κB/TNF-α Signaling Pathway. 恩伐利单抗通过DDX20/NF-κB/TNF-α信号通路抑制PD-L1低表达胃癌细胞的生长
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2024-07-15 DOI: 10.2174/0115680096314855240619181909
Zhuanxia Dong, Zefeng Yang, Jing Ren, Feng Li, Guangyu Wang, Yusheng Wang
{"title":"Envafolimab Inhibits the Growth of Gastric Cancer Cells with Low PD-L1 Expression through the DDX20/NF-κB/TNF-α Signaling Pathway.","authors":"Zhuanxia Dong, Zefeng Yang, Jing Ren, Feng Li, Guangyu Wang, Yusheng Wang","doi":"10.2174/0115680096314855240619181909","DOIUrl":"https://doi.org/10.2174/0115680096314855240619181909","url":null,"abstract":"<p><strong>Background: </strong>The mechanism of action of envafolimab (also known as KN035), a programmed death ligand 1 (PD-L1) inhibitor, in gastric adenocarcinoma patients with low PD-L1 expression is not well understood.</p><p><strong>Aims: </strong>This study aimed to observe the efficacy of envafolimab in gastric adenocarcinoma with low PD-L1 expression and explore the underlying mechanisms.</p><p><strong>Objective: </strong>The objective of this study was to explore the underlying mechanism of envafolimab in gastric cancer with low PD-L1 expression.</p><p><strong>Method: </strong>Cytotoxicity and proliferation were evaluated by a CCK8 assay. Transwell assays were used to detect the migration and invasion ability of gastric cancer cells. The effect of envafolimab on the apoptosis of gastric cancer cells was detected by flow cytometry. The effect of envafolimab on gastric cancer cells with low PD-L1 expression was investigated via proteomics and bioinformatics analysis.</p><p><strong>Result: </strong>A total of 19 patients with advanced gastric adenocarcinoma who received envafolimab monotherapy or combination therapy were reviewed. Among them, 4 patients had low PD-L1 expression, the objective response rate (ORR) was 75% (3/4), and the disease control rate (DCR) was 100% (4/4). In vitro experiments showed that envafolimab inhibited the proliferation, invasion, and migration of gastric cancer cells with low expression of PD-L1 and induced cell apoptosis. DDX20 may be the target of envafolimab in gastric cancer cells, and it is related to the NF-κB signaling pathway. Western blot results showed that the protein expressions of DDX20, NF-κB p65, and TNF-α in gastric cancer cells were decreased after adding envafolimab. Furthermore, the DDX20 gene was silenced by small interfering RNA to further study the effect of DDX20 on PDL1 low expression in gastric cancer cells.</p><p><strong>Conclusion: </strong>This study confirmed that envafolimab could inhibit the growth of gastric cancer cells with low PD-L1 expression by down-regulating DDX20 expression and regulating the NFκB/TNF-α signaling pathway.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cuproptosis: Mechanism and Application in Lymphoma. 杯突:机制及在淋巴瘤中的应用
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2024-07-11 DOI: 10.2174/0115680096296742240614100116
Yubo Wang, Fengyue Yin, Quanyi Jin, Chen Liu, Zhongquan Qi, Dengyue Chen, Yiming Luo
{"title":"Cuproptosis: Mechanism and Application in Lymphoma.","authors":"Yubo Wang, Fengyue Yin, Quanyi Jin, Chen Liu, Zhongquan Qi, Dengyue Chen, Yiming Luo","doi":"10.2174/0115680096296742240614100116","DOIUrl":"https://doi.org/10.2174/0115680096296742240614100116","url":null,"abstract":"<p><p>The cell death field has profited from the increasing attention of the scientific community and has been shown to lie at the very basis of cancer initiation and progression. Cuproptosis is a recently proposed method of cell death in 2022, and it is different from any previously reported method. The principle is that copper ions lead to aggregation and instability of intracellular proteins. An increasing number of researchers are dedicated to enriching the mechanism of cuproptosis and exploring its relationship with cancer. Studies have found that intracellular copper levels have an impact on the occurrence and development of lymphoma. The complexity of lymphoma and the limitations of treatment necessitate in-depth studies of the disease. We will review the mechanism of cuproptosis and its potential in lymphoma therapy.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transforming Cancer Care: The Impact of AI-Driven Strategies. 变革癌症护理:人工智能驱动战略的影响。
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2024-07-10 DOI: 10.2174/0115680096323564240703102748
Debanjan Mukherjee, Debajyoti Roy, Shubham Thakur
{"title":"Transforming Cancer Care: The Impact of AI-Driven Strategies.","authors":"Debanjan Mukherjee, Debajyoti Roy, Shubham Thakur","doi":"10.2174/0115680096323564240703102748","DOIUrl":"https://doi.org/10.2174/0115680096323564240703102748","url":null,"abstract":"<p><p>AI is a critical component in healthcare, especially in the application of precision medicine where patients' characteristics, including genetic makeup, determine the treatment options that should be implemented. AI sorts big data, predicting people's reactions to specific treatments, the right combinations of drugs, and possible side effects, therefore increasing the efficiency of the treatment process and decreasing negative outcomes. This article briefly presents the ethical issues and concerns that might arise due to the integration of AI in society, such as the privacy of data, the issues of bias in the algorithms, and the issues of interpretability of the AI systems. Nevertheless, there is no doubt that AI can bring qualitative changes in cancer care based on its potential to enhance patient prognosis and reduce health care costs, as well as become a defining feature of the standard of care.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing New Prospects: Antipsychotic Drugs Exert Anti-Tumor Effects against Gastric Cancer through Inducing Apoptosis. 揭示新前景:抗精神病药物通过诱导细胞凋亡对胃癌发挥抗肿瘤作用
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2024-07-09 DOI: 10.2174/0115680096303479240614061136
Omolbanin Amjadi, Akbar Hedayatizadeh-Omran, Ehsan Zaboli, Ghasem Janbabaei, Sergio A Lira, Ghasem Ahangari
{"title":"Revealing New Prospects: Antipsychotic Drugs Exert Anti-Tumor Effects against Gastric Cancer through Inducing Apoptosis.","authors":"Omolbanin Amjadi, Akbar Hedayatizadeh-Omran, Ehsan Zaboli, Ghasem Janbabaei, Sergio A Lira, Ghasem Ahangari","doi":"10.2174/0115680096303479240614061136","DOIUrl":"https://doi.org/10.2174/0115680096303479240614061136","url":null,"abstract":"<p><strong>Background and objective: </strong>Globally, Gastric Cancer (GC) ranks as the fifth leading cause of cancer-related deaths. GC is a multifaceted malignancy with diverse etiologies; however, understanding the shared molecular mechanisms can aid in discovering novel targeted therapies for GC. This study has employed a drug repositioning approach to explore new drug candidates for treating GC.</p><p><strong>Methods: </strong>The human GC cell lines AGS, MKN-45, and KATO-III were treated with different concentrations of dopamine, cabergoline, thioridazine, and entacapone to determine effective doses and IC50 values. In vitro, cytotoxic activity on cancer cell lines was screened based on dose/time using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) was used to measure the mRNA expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and Proliferating Cell Nuclear Antigen (PCNA) in each group. The percentage of apoptotic cells was evaluated using Annexin V/PI staining.</p><p><strong>Results: </strong>Dopamine, cabergoline, thioridazine, and entacapone elicited cytotoxic effects on AGS and KATO-III cells in a dose-dependent manner and elevated the percentage of Annexin V-positive cells, suggesting the occurrence of apoptosis. The expression of Bcl-2 and PCNA was significantly decreased, whereas the expression of Bax was considerably increased in the AGS and KATO-III cells compared to that in the blank group (p < 0.05); however, no similar effect was observed in MKN-45 cells.</p><p><strong>Conclusion: </strong>Through in vitro experiments, this study provides evidence that the antipsychotic drugs cabergoline, dopamine, thioridazine, and entacapone can inhibit gastric cancer growth in AGS and KATO-III cells. These findings suggest that these drugs could be repurposed as novel therapeutic agents for the treatment of gastric cancer.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Successful Treatment of Switching EGFR-TKIs for Advanced Lung Adenocarcinoma Due to Interstitial Lung Disease: A Case Report. 间质性肺病导致的晚期肺腺癌转换 EGFR-TKIs 治疗成功:病例报告。
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2024-07-05 DOI: 10.2174/0115680096313868240603090903
Xianghua Zeng, Ting Wang, Ying Tang, Xingyun Liao, Jianghong Wang, Yongsheng Li
{"title":"Successful Treatment of Switching EGFR-TKIs for Advanced Lung Adenocarcinoma Due to Interstitial Lung Disease: A Case Report.","authors":"Xianghua Zeng, Ting Wang, Ying Tang, Xingyun Liao, Jianghong Wang, Yongsheng Li","doi":"10.2174/0115680096313868240603090903","DOIUrl":"https://doi.org/10.2174/0115680096313868240603090903","url":null,"abstract":"<p><strong>Introduction: </strong>Icotinib and almonertinib are efficacious for non-small cell lung cancer (NSCLC) factor patients with epidermal growth receptor (EGFR)-mutation. Patients who previously used EGFR tyrosine kinase inhibitor (EGFR TKI) may switch to another one due to the adverse events.</p><p><strong>Case presentation: </strong>Here, we report a case of a 73-year-old male patient with advanced lung adenocarcinoma in which an EGFR (exon 21 L858R substitution) was found. Icotinib (125mg three times daily) was administered initially. He achieved partial response two months later but developed acute interstitial lung disease (grade 2) with dry cough and chest tightness five months later. Icotinib was discontinued, and treatment with methylprednisolone improved the interstitial lung disease. Chemotherapy with pemetrexed, carboplatin, and bevacizumab was initiated as subsequent therapy. Considering the effectiveness of EGFR-TKIs, we decided cautiously to rechallenge the third-generation TKI almonertinib administration. The patient successfully received almonertinib for almost one year without the recurrence of interstitial lung disease and tumor progression. ILD was an infrequent but often life-threatening reaction associated with icotinib.</p><p><strong>Conclusion: </strong>This is the first reported case of successful switching from icotinib to another EGFR TKI because of interstitial lung disease associated with icotinib, suggesting that EGFR-TKIs rechallenge because of adverse events rather than progression might provide a significant benefit in patients with EGFR driver positive NSCLC.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Pattern of Anemia in Pediatric Solid Tumors Prior to and after Chemotherapy- A Retrospective Cohort Study. 小儿实体瘤化疗前后的贫血模式--一项回顾性队列研究
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2024-07-05 DOI: 10.2174/0115680096292639240611050654
Tomal Barman Aron, Sagor Kumar Roy, Shuting Mao, Bai Li, Seidu A Richard, Yufeng Liu
{"title":"The Pattern of Anemia in Pediatric Solid Tumors Prior to and after Chemotherapy- A Retrospective Cohort Study.","authors":"Tomal Barman Aron, Sagor Kumar Roy, Shuting Mao, Bai Li, Seidu A Richard, Yufeng Liu","doi":"10.2174/0115680096292639240611050654","DOIUrl":"https://doi.org/10.2174/0115680096292639240611050654","url":null,"abstract":"<p><strong>Background: </strong>Solid pediatric tumors refer to cancers that affect children and adoles-cents, and they present unique challenges due to their distinct biological characteristics and their vulnerability to young patients. This study aims to shed light on addressing anemia and the causes of anemia in patients with solid pediatric tumors.</p><p><strong>Materials and methods: </strong>This retrospective cohort comprised 200 healthy children as controls and 235 patients with solid tumors. The study was conducted at first Affiliated Hospital of Zhengzhou University between January 2020 and June 2023. We evaluated different parameters of blood components in controls and patients with solid tumors such as medulloblastoma, neuroblastoma, rhabdomyosarcoma, germ cell tumors, hepatoblastoma and nephroblastoma before and patients with only these tumors 3 weeks after the first cycle of chemotherapy. Further, we evaluated the relationship between serum ferritin and the weight of patients and assessed the relationship be-tween anemia and metastasis to the bone marrow in patients with neuroblastoma and hepatoblas-toma.</p><p><strong>Results: </strong>We observed various combinations of derangements in blood parameters such as hemo-globin, red blood cells, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscu-lar hemoglobin concentration, hematocrit, red cell distribution width, white blood cells, and plate-let in medulloblastoma, neuroblastoma, rhabdomyosarcoma, germ cell tumors, hepatoblastoma and nephroblastoma before and 3 weeks after first cycle of chemotherapy. We found a significant correlation between serum ferritin levels and weight in neuroblastoma patients who are ≤ 2 years (p = 0.022). Involvement of tumor cells in bone marrow correlates with decreased Hb levels in both neuroblastoma (CI = 93.21-106.68, p = 0.001) and hepatoblastoma (CI = 113.36-121.00, p = 0.001).</p><p><strong>Conclusion: </strong>Anemia may manifest as an early symptom in neuroblastoma, hepatoblastoma, and nephroblastoma. Also, anemia may be worse in patients with neuroblastoma and hepatoblastoma after chemotherapy and might warrant anemia therapy.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Progress on DNA Primase Subunit Enzymes Research and Link to Cancer Development and Treatment Approaches. DNA Primase 亚基酶研究的新进展及其与癌症发展和治疗方法的联系。
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2024-07-05 DOI: 10.2174/0115680096300546240530071830
Bingbing Liu, Jingjing Yan, Zhanfei Guo, Xiaodan Chen, Zhiwei Zhang
{"title":"New Progress on DNA Primase Subunit Enzymes Research and Link to Cancer Development and Treatment Approaches.","authors":"Bingbing Liu, Jingjing Yan, Zhanfei Guo, Xiaodan Chen, Zhiwei Zhang","doi":"10.2174/0115680096300546240530071830","DOIUrl":"https://doi.org/10.2174/0115680096300546240530071830","url":null,"abstract":"<p><p>In eukaryotic cells, primases are the key polymerase during DNA replication and DNA damage repair, which includes primase subunit 1 (PRIM1) and primase subunit 2 (PRIM2). Recent studies reported that the aberrant expression and activity of PRIM enzymes are closely associated with the carcinogenesis and development of various cancers. PRIM1 is overexpressed in hepatocellular carcinoma, breast cancer, and other cancers, while PRIM2 is highly expressed in lung cancer, gastrointestinal cancer, and other cancers. Further studies revealed that the knockdown of PRIM1 promoted the apoptosis of liver cancer cells, while Dihydroartemisinin (DHA) can inhibit PRIM2 expression, suppress lung cancer cell proliferation, and result in ferroptosis. The present review summarized the recent advancements in the research of the aberrant expression of PRIM1 and PRIM2 and their activity in DNA replication, DNA damage repair, and carcinogenesis. Furthermore, the strategies targeting PRIM1 or/and PRIM2 become potential therapeutic approaches in cancer treatment.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Imidazacridine Derivative LPSF/AC-05 Induces Apoptosis, Cell Cycle Arrest, and Topoisomerase II Inhibition in Breast Cancer, Leukemia, and Lymphoma. 咪唑吖啶衍生物 LPSF/AC-05 在乳腺癌、白血病和淋巴瘤中诱导细胞凋亡、细胞周期停滞和拓扑异构酶 II 抑制。
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2024-07-05 DOI: 10.2174/0115680096290753240613114122
Mardonny Bruno de Oliveira Chagas, Valécia de Cássia Mendonça da Costa, Claudio Montenegro, Maria do Carmo Alves de Lima, Michelle Melgarejo da Rosa, Michelly Cristiny Pereira, Moacyr Jesus Barreto de Melo Rêgo, Maira Galdino da Rocha Pitta
{"title":"The Imidazacridine Derivative LPSF/AC-05 Induces Apoptosis, Cell Cycle Arrest, and Topoisomerase II Inhibition in Breast Cancer, Leukemia, and Lymphoma.","authors":"Mardonny Bruno de Oliveira Chagas, Valécia de Cássia Mendonça da Costa, Claudio Montenegro, Maria do Carmo Alves de Lima, Michelle Melgarejo da Rosa, Michelly Cristiny Pereira, Moacyr Jesus Barreto de Melo Rêgo, Maira Galdino da Rocha Pitta","doi":"10.2174/0115680096290753240613114122","DOIUrl":"https://doi.org/10.2174/0115680096290753240613114122","url":null,"abstract":"<p><strong>Introduction: </strong>Cancer is the major cause of morbidity and mortality worldwide. Current treatments for both solid and hematological tumors are associated with severe adverse effects and drug resistance, necessitating the development of novel selective antineoplastic drugs.</p><p><strong>Methods: </strong>The present study describes the antitumor activity of the imidazacridine derivative 5-acridin-9-ylmethylidene-2-thioxoimidazolidin-4-one (LPSF/AC05) in breast cancer, leuke-mia, and lymphoma cells. Cytotoxicity assays were performed in PBMC and in breast cancer, leukemia, and lymphoma cell lines using the MTT method. Changes in cell cycle progression and apoptosis were assessed using flow cytometry. Moreover, topoisomerase II inhibition as-says were performed. LPSF/AC05 exhibited cytotoxicity in six of the nine cell lines tested.</p><p><strong>Results: </strong>The best results for leukemia and lymphoma were observed in the Toledo, Jurkat, and Raji cell lines (IC50 = 27.18, 31.04, and 33.36 M, respectively). For breast cancer, the best re-sults were observed in the triple-negative cell line MDA-MB-231 (IC50 = 27.54 μM). The compound showed excellent selectivity, with no toxicity to normal human cells (IC50 > 100M; selectivity index > 3). Cell death was primarily induced by apoptosis in all cell lines. Furthermore, LPSF/AC05 treatmentinduced cell cycle arrest at the G0/G1 phase in leuke-mia/lymphoma and at the G2/M phase in breast cancer.</p><p><strong>Conclusion: </strong>Finally, topoisomerase II was inhibited. These results indicate the potential ap-plication of LPSF/AC05 in cancer therapy.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信