Current cancer drug targets最新文献

筛选
英文 中文
MED10 Increases Cisplatin Resistance by Promoting PTEN Ubiquitination of Hepatocellular Carcinoma.
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2025-04-03 DOI: 10.2174/0115680096330893241221141235
Qiucheng Cai, Jianyong Liu, Junyang Xiao, Jianwei Chen, Lizhi Lv, Fang Yang
{"title":"MED10 Increases Cisplatin Resistance by Promoting PTEN Ubiquitination of Hepatocellular Carcinoma.","authors":"Qiucheng Cai, Jianyong Liu, Junyang Xiao, Jianwei Chen, Lizhi Lv, Fang Yang","doi":"10.2174/0115680096330893241221141235","DOIUrl":"https://doi.org/10.2174/0115680096330893241221141235","url":null,"abstract":"<p><strong>Objective: </strong>Hepatocellular carcinoma (HCC) is a highly prevalent malignant tumor, ranking as the third leading cause of cancer-related deaths worldwide. Despite ad-vances in chemotherapy, many patients exhibit limited therapeutic efficacy, ultimately leading to cisplatin resistance. Thus, an in-depth investigation into the molecular mecha-nisms underlying cisplatin resistance is critically needed.</p><p><strong>Materials and methods: </strong>This study utilized the GEPIA dataset to analyze MED10 expres-sion and its association with HCC. MED10 expression levels in normal and HCC tissues were quantified via PCR and immunohistochemistry. HCC cell proliferation was assessed through cell viability and colony formation assays, while apoptosis rates were measured using flow cytometry. To examine PTEN ubiquitination, Western blot analysis was con-ducted in vitro. Additionally, xenograft tumor models were employed using BALB/c nude mice (male/female, 6 weeks old, 18-22 g) to evaluate cellular proliferation in vivo.</p><p><strong>Results: </strong>The findings reveal a pivotal role for MED10 in driving cisplatin resistance in HCC by promoting PTEN ubiquitination. MED10 expression correlated with HCC malig-nancy, and MED10 knockdown significantly reduced the IC50 of cisplatin in SMMC-7721, HepG2, and MHCC97-H cell lines. MED10 overexpression significantly decreased PTEN protein levels, which was reversed by the ubiquitination inhibitor TAK-243, while PTEN mRNA levels remained unaffected by MED10 overexpression or TAK-243. Both in vitro and in vivo, MED10 enhanced cisplatin resistance by promoting PTEN ubiquitination in HCC cells. These results offer valuable insights into the molecular mechanisms under-lying MED10 expression and its role in cisplatin resistance in HCC.</p><p><strong>Conclusions: </strong>MED10 enhances cisplatin resistance by promoting PTEN ubiquitination in HCC cells.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143779367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HDL Cholesterol Levels and Pancreatic Cancer Risk: Protective Effects Revealed.
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2025-03-25 DOI: 10.2174/0115680096334509241218141459
Yiming Shao, Rui Hao, Si Si Lin, Ba-Fang Ma, Jun-Nan Ye, Mayila Maimaiti, Yasen Maimaitiyiming
{"title":"HDL Cholesterol Levels and Pancreatic Cancer Risk: Protective Effects Revealed.","authors":"Yiming Shao, Rui Hao, Si Si Lin, Ba-Fang Ma, Jun-Nan Ye, Mayila Maimaiti, Yasen Maimaitiyiming","doi":"10.2174/0115680096334509241218141459","DOIUrl":"https://doi.org/10.2174/0115680096334509241218141459","url":null,"abstract":"<p><strong>Background: </strong>The causal relationship between lipoprotein traits and the risk of pancre-atic cancer (PC) remains unclear. In this study, we employed a two-sample Mendelian randomiza-tion (MR) approach to explore the untangled relationship between lipoprotein traits and PC.</p><p><strong>Methods: </strong>Univariable MR analyses were used to determine the causal connection between lipo-protein traits and PC. Instrumental variables corresponding to lipoprotein traits were taken from the Global Lipids Genetics Consortium (GLGC) (n = 188,578). The outcome dataset was created from PC summary-level data (n case = 1896, n control = 1939) from a genome-wide association study of European ancestry. Causal effects were evaluated using the inverse variance weighted (IVW) method. For sensitivity analysis, both the weighted median (WM) and MR-Egger methods, among others, were utilized. We also conducted multivariable MR analyses to examine potential confounders.</p><p><strong>Results: </strong>In univariable MR, IVW methods supported evidence that HDL cholesterol (OR = 0.463, 95% CI: 0.313-0.685; P = 1.10×10-4) was linked with a decreased risk of PC. These findings were consistent across other MR methods, including MR-Egger (OR = 0.340, 95% CI: 0.182-0.638; P = 1.30×10-3) and WM (OR = 0.367, 95% CI: 0.195-0.692; P = 1.90×10-3). Our results displayed no significant heterogeneity or horizontal pleiotropy. Furthermore, these associations persisted in the multivariable MR analysis after adjusting for confounding factors such as smok-ing, alcohol consumption, and body mass index (BMI).</p><p><strong>Conclusions: </strong>Our comprehensive MR analyses consistently demonstrate a protective association between higher HDL cholesterol levels and decreased PC risk, even after adjustments for key life-style factors and BMI.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143718217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is the Use of SGLT-2 Associated with an Increased Risk of Cancer?
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2025-03-17 DOI: 10.2174/0115680096383119250307083130
Sadique Hussain, Gyas Khan, Gaurav Gupta
{"title":"Is the Use of SGLT-2 Associated with an Increased Risk of Cancer?","authors":"Sadique Hussain, Gyas Khan, Gaurav Gupta","doi":"10.2174/0115680096383119250307083130","DOIUrl":"https://doi.org/10.2174/0115680096383119250307083130","url":null,"abstract":"","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143656384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
YPEL1 Inhibits Development of Gemcitabine Resistance in NK / T Cell Lymphomas.
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2025-03-17 DOI: 10.2174/0115680096328745250122231110
Miao Wang, Siyu Qian, Yue Zhang, Qingjiang Chen, Xudong Zhang, Mingzhi Zhang
{"title":"YPEL1 Inhibits Development of Gemcitabine Resistance in NK / T Cell Lymphomas.","authors":"Miao Wang, Siyu Qian, Yue Zhang, Qingjiang Chen, Xudong Zhang, Mingzhi Zhang","doi":"10.2174/0115680096328745250122231110","DOIUrl":"https://doi.org/10.2174/0115680096328745250122231110","url":null,"abstract":"<p><strong>Introduction: </strong>Yippee Like 1 (YPEL1) is a nuclear protein involved in various cellular processes, including cell cycle regulation, senescence, and mammalian develop-ment. It plays a dual role in cancer, functioning as either an antitumor or tumor-promoting factor.</p><p><strong>Methods: </strong>In the current study, via The Cancer Genome Atlas (TCGA) search, we found that YPEL1 is aberrantly expressed in various cancers. High expression of YPEL1 corre-lated with poorer survival outcomes, whereas low expression of YPEL1 was associated with improved overall survival of patients. YT cell lines and gemcitabine-resistant YT cell line (YT/Gem-R) exhibit elevated levels of the YPEL1 protein.</p><p><strong>Result: </strong>Furthermore, we determined that knocking down YPEL1 in both YT cell and YT/Gem-R induces apoptosis and autophagy. Additionally, silencing YPEL1 significantly reduced the tumor growth the xenograft model.</p><p><strong>Conclusion: </strong>These findings suggest that YPEL1 exhibits the potential for being used as a target for NK / T cell lymphoma treatment.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143656402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Nanomaterials for Targeted Drug Delivery: Emerging Trends and Future Prospects in Nanodrug Development.
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2025-03-12 DOI: 10.2174/0115680096362452250301054711
Abdulrahman Al Ayidh, Mohamed Abbas, Muneer Parayangat, Thafasal Ijyas
{"title":"Advances in Nanomaterials for Targeted Drug Delivery: Emerging Trends and Future Prospects in Nanodrug Development.","authors":"Abdulrahman Al Ayidh, Mohamed Abbas, Muneer Parayangat, Thafasal Ijyas","doi":"10.2174/0115680096362452250301054711","DOIUrl":"https://doi.org/10.2174/0115680096362452250301054711","url":null,"abstract":"<p><p>The development of targeted drug delivery systems has transformed modern medicine, offering novel approaches to improve the efficacy and safety of therapeutic agents. Nanomaterials, due to their unique physicochemical properties, have emerged as pivotal contributors to this transformation. This paper aimed to explore recent advance-ments in nanomaterials for targeted drug delivery, highlighting emerging trends and pro-spects in nanodrug development. Nanomaterials, including polymers, liposomes, metal-based nanoparticles, dendrimers, and carbon-based structures, possess high surface area, tunable surface chemistry, and biocompatibility, which enable precise drug delivery, en-hanced solubility, improved stability, and controlled release profiles. These characteristics allow for the targeting of specific tissues or cells, thereby maximizing therapeutic efficacy while minimizing systemic side effects. The objective of this review was to provide a comprehensive analysis of the role of these nanomaterials in improving drug bioavailabil-ity, targeting specificity, and controlled release, with particular emphasis on their applica-tions in cancer therapy, antibiotic delivery, and gene therapy. This paper addresses critical challenges associated with the use of nanomaterials, including toxicity, potential immuno-genicity, regulatory hurdles, and the complexities involved in large-scale manufacturing and clinical translation. Strategies to overcome these barriers, such as surface modifica-tion, optimization of nanomaterial properties, and the development of multifunctional and smart nanocarriers, are discussed. The review concludes by emphasizing the potential of nanomaterials to revolutionize drug delivery systems, contributing to the development of more effective, personalized, and patient-friendly therapeutic options, thereby paving the way for next-generation treatments for a wide range of diseases.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143613844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EWS-RNA Binding Protein 1: Structural Insights into Ewing Sarcoma by Conformational Dynamics Investigations.
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2025-03-11 DOI: 10.2174/0115680096330765250220053705
Saba Shahzadi, Muhammad Yasir, Andrzej Kloczkowski, Mubashir Hassan
{"title":"EWS-RNA Binding Protein 1: Structural Insights into Ewing Sarcoma by Conformational Dynamics Investigations.","authors":"Saba Shahzadi, Muhammad Yasir, Andrzej Kloczkowski, Mubashir Hassan","doi":"10.2174/0115680096330765250220053705","DOIUrl":"https://doi.org/10.2174/0115680096330765250220053705","url":null,"abstract":"<p><strong>Background: </strong>Prior research has demonstrated that proteins play a significant role in the prognosis and treatments of various sarcomas, including Ewing sarcoma through the interplay of downstream signaling cascades. However, there is limited understanding about the strcucture conformation of EWSR1 and its structural implication in the prognosis of Ews-ing Sarcoma by interaction with RNA molecules.</p><p><strong>Aims: </strong>The primary goal of ongoing research is to determine how EWSR1 contributes to Ewing sarcoma.</p><p><strong>Objective: </strong>The current study explores the complexity of EWSR1 structure and its conforma-tional interactions with RNA in relation to Ewing sarcoma.</p><p><strong>Methods: </strong>Here, we employed a comparative modeling approach to predict EWSR1 domains separately and assembled them into one structural unit using a DEMO server. Additionally, the RNA motifs interacting with EWSR1 were predicted, and the 3D model was built using RNAComposer. Protein-RNA docking and MD simulation studies were carried out to check the intermolecular interactions and stability behavior of docked EWSR1-RNA complexes.</p><p><strong>Results: </strong>The overall results explore the structural insights into EWSR1 and their interactions with RNA, which may play a momentous role in co- and post-transcriptional regulation to control gene expression.</p><p><strong>Conclusion: </strong>Taken togather, our findings suggest that EWSR1 may be a useful therapeutic target for the diagnosis and management of Ewing sarcoma.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143604050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Radiation Therapy Enhancement and Radio-Protection By Nano-Curcumins: A Systematic Review.
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2025-03-07 DOI: 10.2174/0115680096360434250211042759
Elham Raeisi, Saeid Heidari-Soureshjani, Catherine Mt Sherwin, Yves Lemoigne, Hossein Mardani -Nafchi
{"title":"Advances in Radiation Therapy Enhancement and Radio-Protection By Nano-Curcumins: A Systematic Review.","authors":"Elham Raeisi, Saeid Heidari-Soureshjani, Catherine Mt Sherwin, Yves Lemoigne, Hossein Mardani -Nafchi","doi":"10.2174/0115680096360434250211042759","DOIUrl":"https://doi.org/10.2174/0115680096360434250211042759","url":null,"abstract":"<p><strong>Introduction/objective: </strong>Nano-curcumins (Nano-CUR) improve solubility, bio-availability, and stability of the release of CUR into the body. In this systematic review, we aim to investigate different CUR nanoformulations' in targeting radiosensitizing path-ways and radioprotective mechanisms.</p><p><strong>Methods: </strong>We thoroughly searched electronic databases, including PubMed/MEDLINE, Web of Science, Scopus, Embase, and Cochrane Library to identify pertinent studies pub-lished before July 21, 2024. inclusion and exclusion criteria were set based on the study's purposes. Two reviewers independently performed data extraction to ensure precision and minimize bias. Subsequently, the data were extracted and analyzed.</p><p><strong>Results: </strong>A total of 24 articles were included. Nano-CURs by scavenging the levels of re-active oxygen species (ROS), decrease malondialdehyde (MDA), improve superoxide dismutase (SOD), prevent DNA methylation, reduce tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-b and transforming growth factor-beta (TGF-β1), improve cell cycle, inhibit vascular endothelial growth factor (VEGF), attenuate cell cytotoxicity and modu-late cell apoptosis induce its radioprotective effects. In contrast, Nano-CUR induces oxida-tive stress and accumulation ROS, inhibits nuclear factor-κB (NF- κB), activates the ex-pression of TNF, TGF-β, phosphatidylinositol and FoxO, causing DNA damage, activat-ing proapoptotic pathways (boosted P53, P21 and BAX expressions), cell cycle arrest, re-ducing hypoxia-inducible factor (HIF-1α), revealed radiosensitizing effects.</p><p><strong>Conclusion: </strong>Nano-CURs improve CUR bioavailability and increase cancerous cells' sen-sitivity to radiation. They also protect healthy cells from ionizing radiation without signifi-cant side effects.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competing Risk Analysis for Diabetes Mellitus Mortality in Bladder Cancer Patients: A Population-based Study.
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2025-03-07 DOI: 10.2174/0115680096356675250217074915
Shunde Wang, Baishu Zheng, Junjie Yang, Junyong Zhang
{"title":"Competing Risk Analysis for Diabetes Mellitus Mortality in Bladder Cancer Patients: A Population-based Study.","authors":"Shunde Wang, Baishu Zheng, Junjie Yang, Junyong Zhang","doi":"10.2174/0115680096356675250217074915","DOIUrl":"https://doi.org/10.2174/0115680096356675250217074915","url":null,"abstract":"<p><strong>Background: </strong>Historically, there has been a lack of focus on the mortality rates of individuals with both diabetes and Bladder Bancer (BC). Our study aimed to identify the risk factors associated with death from Diabetes Mellitus (DM) in BC patients.</p><p><strong>Methods: </strong>Data was gathered from the SEER database on individuals who were diagnosed with BC between the years 2000 and 2017. Calculation of the Standardized Mortality Ratio (SMR) was performed to determine the mortality rate of DM in patients from BC. Potential risk factors for DM mortality were identified by a multivariate competing risk model. Haz-ard Ratios (HR), with 95% confidence intervals (95% CI) were used to indicate the degree of associated risk.</p><p><strong>Results: </strong>A total of 217,230 BC patients' data were collected from the SEER database for analysis. Among them, 98,880 patients passed away, and 1,783 patients encountered DM mortality. The overall SMR for DM mortality in BC patients was 3.32 (95% CI: 3.17-3.48). Results indicated that SMR increased with increasing years but decreased with increasing follow-up time. Multivariate competing risk analysis shows that BC patients with the fol-lowing factors were at higher risk of developing DM mortality: advanced age, male, black, in situ tumor stage, early year of diagnosis, pathology type of transitional cell carcinoma, without chemotherapy or radiation therapy, and absence of spouse (including separated, di-vorced, widowed, and unmarried).</p><p><strong>Conclusion: </strong>Individuals diagnosed with BC are at a considerably elevated risk of mortality from DM compared to the general population. It is of the utmost importance to identify high-risk groups and implement effective interventions for DM in order to enhance the sur-vival rate among this patient population.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143572413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research Progress of M6A Methylation Modification in Immunotherapy of Colorectal Cancer.
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2025-03-06 DOI: 10.2174/0115680096332984250221071109
Jingfan Zheng, Yuyu Chen, Xintong Peng, Wei Zheng, Yu Zhang, Fengrong Hei, Zhong Lu
{"title":"Research Progress of M6A Methylation Modification in Immunotherapy of Colorectal Cancer.","authors":"Jingfan Zheng, Yuyu Chen, Xintong Peng, Wei Zheng, Yu Zhang, Fengrong Hei, Zhong Lu","doi":"10.2174/0115680096332984250221071109","DOIUrl":"https://doi.org/10.2174/0115680096332984250221071109","url":null,"abstract":"<p><p>Among the Poly(ADP-ribose) Polymerase (PARP) family in mammals, PARP1 is the first identified and well-studied member that plays a critical role in DNA damage repair and has been proven to be an effective target for cancer therapy. Here, we have reviewed not only the role of PARP1 in different DNA damage repair pathways, but also the working mech-anisms of several PARP inhibitors (PARPi), inhibiting Poly-ADP-ribosylation (PARylation) processing and PAR chains production to trap PARP1 on impaired DNA and inducing Tran-scription-replication Conflicts (TRCs) by inhibiting the PARP1 activity. This review has sys-tematically summarized the latest clinical application of six authorized PARPi, including olaparib, rucaparib, niraparib, talazoparib, fuzuloparib and pamiparib, in monotherapy and combination therapies with chemotherapy, radiotherapy, and immunotherapy, in different kinds of cancer. Furthermore, probable challenges in PARPi application and drug resistance mechanisms have also been discussed. Despite these challenges, further development of new PARP1 inhibitors appears promising as a valuable approach to cancer treatment.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143572415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological Functions and Therapeutic Potential of UBE2T in Human Cancer.
IF 2.3 4区 医学
Current cancer drug targets Pub Date : 2025-03-06 DOI: 10.2174/0115680096370867250211070948
Keshen Wang, Qichen He, Xiangyan Jiang, Yong Ma, Tao Wang, Huinian Zhou, Zeyuan Yu, Zuoyi Jiao
{"title":"Biological Functions and Therapeutic Potential of UBE2T in Human Cancer.","authors":"Keshen Wang, Qichen He, Xiangyan Jiang, Yong Ma, Tao Wang, Huinian Zhou, Zeyuan Yu, Zuoyi Jiao","doi":"10.2174/0115680096370867250211070948","DOIUrl":"https://doi.org/10.2174/0115680096370867250211070948","url":null,"abstract":"<p><p>The ubiquitin-proteasome system is a fundamental regulatory mechanism that governs protein stability and intracellular signaling in eukaryotic cells. This system relies on a coordinated cascade of enzymatic activities involving activating enzymes, conjugating enzymes, and ligases to assemble distinct ubiquitin signals. These signals are subsequently edited, removed, or interpreted by deubiquitinases and ubiquitin-binding proteins. While E3 ligases have traditionally been recognized as the primary determinants of substrate specificity in the ubiquitination process, recent studies have revealed that the dysregulation of E2 enzymes can also lead to significant pathological outcomes, including chromatin instability, immune dysregulation, metabolic dysfunction, and an elevated risk of cancer. Consequently, E2 enzymes have emerged as promising therapeutic targets for the treatment of various dis-eases. This review provides a comprehensive examination of the roles and mechanisms of the ubiquitin-conjugating enzyme E2T (UBE2T) in cancer initiation, progression, and therapy resistance, highlighting its potential as a compelling target for cancer therapeutics.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143572324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信