{"title":"Therapeutic Effects of Mesenchymal Stem Cells Carrying Echovirus in Mouse Models of Breast Cancer.","authors":"Fatemeh Aminian, Nahid Babaei, Hadi Esmaeili Gouvarchin Ghaleh, Gholamreza Khamisipour, Mahdieh Farzanehpour","doi":"10.2174/0115665232347036250610065753","DOIUrl":"https://doi.org/10.2174/0115665232347036250610065753","url":null,"abstract":"<p><strong>Introduction: </strong>Breast Cancer (BC) is treatable in early stages but has high mortality rates in advanced cases, highlighting the need for better treatment methods. Oncolytic Viruses (OVs) have emerged as a promising approach to specifically target and kill BC tumor cells, although their effectiveness is limited by the immune response. To overcome this challenge, researchers are investigating the use of cell carriers. This study aims to evaluate the effects of mesenchymal stem cells carrying Echovirus (MSCs-ECHO) in a BC mouse model.</p><p><strong>Method: </strong>The effectiveness of MSCs-ECHO was evaluated in a mouse model of BC induced by the subcutaneous injection of live 4T1 cells (1×104) in female Balb/c mice. Its effects were assessed using several parameters, including Tumor Size (TS), Survival Probability (SP), and indicators of immune system response, such as the Splenocyte Proliferation Index (SPI), Nitric Oxide (NO), Lactate Dehydrogenase (LDH), and cytokines (IL-4, IL-10, IFN-γ, and TGF-β) in the supernatant of splenocytes.</p><p><strong>Results: </strong>Our findings revealed that treatment with MSCs-ECHO significantly increased SP, SPI, LDH, NO, and IFN-γ levels, while reducing TS, TGF-β, IL-4, and IL-10 levels in treated mice compared to the control group. Additionally, MSCs-ECHO demonstrated superior therapeutic effects compared to treatment with cell-free virus.</p><p><strong>Conclusion: </strong>These findings indicate that ECHO treatment may represent a promising therapeutic approach for BC. Based on the results of the present study, the utilization of MSCs as carriers for OV appears to be a viable complementary strategy in the management of BC.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144505055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current gene therapyPub Date : 2025-06-12DOI: 10.2174/0115665232366303250529164610
Fatma Khorshed, Amina M Medhat, Germine M Hamdy, Ehab El-Dabaa, Hanaa Hammad, Heba A H Abd Elhameed, Mohamed Saber
{"title":"Novel Perspective of Regulating P53/Bcl2/Caspase-3 via In vitro Targeted AFP Gene Knocks Out in HepG2 Cells Using CRISPR/Cas9 Editing Tool.","authors":"Fatma Khorshed, Amina M Medhat, Germine M Hamdy, Ehab El-Dabaa, Hanaa Hammad, Heba A H Abd Elhameed, Mohamed Saber","doi":"10.2174/0115665232366303250529164610","DOIUrl":"https://doi.org/10.2174/0115665232366303250529164610","url":null,"abstract":"<p><strong>Introduction: </strong>Hepatocellular carcinoma (HCC) is a major health burden worldwide, with a persistent need for molecular target drugs. Alpha-fetoprotein (AFP) is a major concern during HCC, as it has an incompletely solved action. CRISPR/Cas9 is a gene editing tool that aids in cancer treatment research; thus, this study evaluated the effect of in vitro knockout of AFP on HCC using CRISPR/Cas9 technique.</p><p><strong>Methods: </strong>Two sgRNAs targeting specific sites in AFP exon 2 were separately cloned to the mammalian expression vector pSpCas9 (BB)-2a-GFP (PX458). HepG2 cells were transfected with CRISPR constructs I and II, and a pool of the two constructs (M) for 6 -, 24- and 39 hours using liopfectamine3000. AFP editing was evaluated regarding genomic DNA sequence, RNA, and protein expression levels. In addition, the effect of AFP knocking out on HepG2 viability, and apoptotic genes mRNA and protein expression levels were evaluated using crystal violet assay, real-time PCR, and western blot analysis respectively.</p><p><strong>Results: </strong>The results revealed efficient delivery of the AFP/CRISPR constructs to HepG2 cells. Insertion and deletion mutations introduced to the AFP genomic sequence were analyzed using TIDE software analysis and the Expasy translation tool. The viability of the HepG2 cells was reduced 39 hours post-transfection with significant modulation in the expression of the apoptotic markers P53, BAX, Bcl2, and caspase-3.</p><p><strong>Conclusion: </strong>This study succeeded in developing AFP/CRISPR constructs that could disrupt the AFP genomic sequence, reduce its expression, and restore the activity of cell-specific apoptotic factors, demonstrating the potential inhibitory effect of AFP downregulation on HCC progression.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144282791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current gene therapyPub Date : 2025-05-27DOI: 10.2174/0115665232390083250526072441
Komal, Lovekesh Singh, Subramanyam Sarma Ganti
{"title":"Targeting Extrachromosomal DNA (ecDNA) in Cancer: A New Era of CHK1 Inhibition and Personalized Treatments.","authors":"Komal, Lovekesh Singh, Subramanyam Sarma Ganti","doi":"10.2174/0115665232390083250526072441","DOIUrl":"https://doi.org/10.2174/0115665232390083250526072441","url":null,"abstract":"","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144186746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Next-Generation Nucleic Acid Delivery: A Review of Nanobiosystem Design and Applications.","authors":"Ashish Kumar Parashar, Anu Hardenia, Sunil Kumar Dwivedi, Gaurav Kant Saraogi, Shiv Hardenia","doi":"10.2174/0115665232367377250519114910","DOIUrl":"https://doi.org/10.2174/0115665232367377250519114910","url":null,"abstract":"<p><p>The increasing approval of nucleic acid therapeutics has led to a significant advancement in medicines, demonstrating their potential to revolutionize the prevention and treatment of numerous diseases. However, challenges like nuclease degradation and difficult cellular delivery hinder their use as therapeutic agents. The rising demand for precise gene therapy delivery has positioned nanobiosystems as a groundbreaking solution, with their customizable properties enabling targeted and efficient delivery. Nucleic Acid therapeutics, encompassing antisense DNA, mRNA, small interfering RNA (siRNA), and microRNA (miRNA), have been rigorously investigated for their capacity to modulate gene expression. Notably, integrating these gene therapies with nanoscale delivery platforms has significantly broadened their scope, facilitating sophisticated advancements in bioanalysis, gene silencing, protein replacement therapies, and the development of vaccines. This review provides a thorough review of recent advancements in nanobiosystems for therapeutic nucleic acid delivery. We explore the unique characteristics of various nanobiosystems, including gene therapy-based delivery, nanoparticles, stimuli-responsive systems, smart nanocarriers, and extracellular vesicle-based delivery. We offer a detailed overview of their applications in nucleic acid delivery. Furthermore, we address biological barriers and strategies for the therapeutic delivery of nucleic acids. Ultimately, this review provides critical insights into the strategic development of nextgeneration delivery vectors for nucleic acid therapeutics.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144186745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current gene therapyPub Date : 2025-04-18DOI: 10.2174/0115665232364091250203090710
Xu Zhu, Ying Zhang, Peiying Pan, Xinlei Liu, Jian Zhang, Xiaojun Du, Tao Wang, Yin Teng, Chao Fan, Jianglun Li, Jieheng Wu, Zhu Zeng, Siyuan Yang
{"title":"Identification and Validation of Amino Acid Metabolism-Related Biomarkers and Investigation of their Potential Mechanisms in Lung Adenocarcinoma.","authors":"Xu Zhu, Ying Zhang, Peiying Pan, Xinlei Liu, Jian Zhang, Xiaojun Du, Tao Wang, Yin Teng, Chao Fan, Jianglun Li, Jieheng Wu, Zhu Zeng, Siyuan Yang","doi":"10.2174/0115665232364091250203090710","DOIUrl":"https://doi.org/10.2174/0115665232364091250203090710","url":null,"abstract":"<p><strong>Background: </strong>In lung adenocarcinoma (LUAD), the metabolism of amino acids (AAs) plays a crucial role in the growth, infiltration, and metastasis of tumor cells. Nevertheless, the potential of AA metabolism-associated genes (AAMRGs) to serve as prognostic indicators in LUAD remains ambiguous. Thus, this study sought to evaluate the prognostic value of AAMRGs in LUAD patients.</p><p><strong>Methods: </strong>Herein, we extracted LUAD transcriptomic information from two key repositories, namely The Cancer Genome Atlas Program (TCGA) and Gene Expression Omnibus. The non-negative matrix factorization (NMF) clustering technique was used to categorize the LUAD cases based on their AAM profiles before assessing the survival rates and composition of immune cells. Using limma software, shared dysregulated transcripts were identified across subgroups before functional annotation via DAVID, which comprised exploration of gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathway. The prognostic framework was developed using five prognostic indicators through TCGA-derived LUAD specimens. We performed the analysis using singlevariable Cox, least absolute shrinkage and selection operator regression, and multi-factorial Cox regression. Molecular pathways between cohorts were compared with gene set enrichment analysis (GSEA). Real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical (IHC) analysis were utilized to validate the key genetic components of the model.</p><p><strong>Results: </strong>NMF clustering analysis was performed to categorize 497 LUAD patients into three distinct subgroups with obvious variations in the survival rates. The subtypes exhibited substantial disparities in immune cell populations, particularly in monocytes and mast cells. Analysis of 176 shared differentially expressed genes (DEGs) revealed enrichment in T lymphocyte stimulation, immunological reactions, and extra immune-related processes within the subgroups. The prognostic framework was constructed using biomarkers, such as ERO1LB, HPGDS, LOXL2, TMPRSS11E, and SLC34A2. Moreover, GSEA demonstrated a correlation between elevated risk and cell cycle processes, but lower risk was linked with arachidonic acid metabolic pathways. Analysis of 1128 DEGs revealed enrichment in various physiological processes, including cellular division, p53 signaling cascades, immunological responses, and additional pathways upon the comparison of high and low-risk cohorts. The RT-qPCR analysis confirmed elevated expression levels of ERO1LB and TMPRSS11E in LUAD specimens. Consistent with RT-qPCR analysis, the IHC results affirmed that the expression levels of ERO1LB and TMPRSS11E were increased in LUAD specimens.</p><p><strong>Conclusion: </strong>The five identified AAMRGs in LUAD were validated and appropriately utilized to construct a risk assessment model that could potentially act as prognostic biomarkers for LUAD patients.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143983958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current gene therapyPub Date : 2025-04-15DOI: 10.2174/0115665232369708250327081305
Brandon Hoyle, Dhimiter Bello, Jonathan Hill, Soumita Das, Jonghan Kim
{"title":"Imaged Capillary Isoelectric Focusing (icIEF) Platform for Characterization of Charge Variants of Adeno-Associated Virus (AAV) Capsids and Impact on Their Transduction Efficiency.","authors":"Brandon Hoyle, Dhimiter Bello, Jonathan Hill, Soumita Das, Jonghan Kim","doi":"10.2174/0115665232369708250327081305","DOIUrl":"https://doi.org/10.2174/0115665232369708250327081305","url":null,"abstract":"<p><strong>Objective: </strong>Adeno-Associated Virus (AAV) vectors are comprised of a capsid protein encapsulating a Deoxyribonucleic Acid (DNA) transgene that has been used in the gene therapy field showing potential to treat a range of genetic diseases. Methods in the field of gene therapy should be optimized or enhanced to deepen understanding of AAVs, specifically around charge heterogeneity of capsid species.</p><p><strong>Methods: </strong>In this study, a versatile approach was presented for investigating the charge heterogeneity of Adeno-Associated Virus (AAV) capsid proteins of a variety of serotypes. This method employs Imaged Capillary Isoelectric Focusing (icIEF) coupled with native fluorescence imaging detection and has undergone exhaustive validation.</p><p><strong>Results: </strong>Demonstrating its platform nature, this method analyzed seven different AAV serotypes from multiple manufacturing platforms. The distinctive profiles generated for each AAV serotype serve as valuable indicators for both identity confirmation and stability assessment. It was shown that thermal stress and pH conditions play a role in increasing acidic charged variants over time, affecting the charge heterogeneity of AAVs, which can be serotype-specific. Reverse phase LC-MS was used to identify and confirm the increased presence of Post-Translational Modifications (PTMs) that are linked to increasing acidic species variants relative to non-stressed AAVs.</p><p><strong>Conclusion: </strong>These PTMs have biological consequences reflected in the diminished expression of the protein of interest in vitro. This cIEF method successfully analyzed a variety of AAV serotypes, and increasing trends of acidic variants led to reduced in vitro potency.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144062560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Next-Generation Whole-Exome Pattern: Advanced Methods and Clinical Significance.","authors":"Sumel Ashique, Anas Islam, Navjot Kaur Sandhu, Bhavinee Sharma, Rashmi Pathak, Himanshu Sharma","doi":"10.2174/0115665232356780250331181436","DOIUrl":"https://doi.org/10.2174/0115665232356780250331181436","url":null,"abstract":"<p><p>NGS (Next-generation sequencing) has emerged as the primary approach for gene finding in uncommon hereditary disorders. Targeted gene panels, whole genome sequencing (WGS), and whole exome sequencing (WES) are uses of next-generation sequencing and other related technologies. It is possible to explain personal or individual genome sequencing using NGS technology, as well as to detect disease-causing mutations using NGS findings. NGS, deep sequencing or massively parallel are similar words that describe a method of DNA sequencing leading to revolutionary change in genomic research. Due to its cost-effectiveness, Whole-Exome sequencing (WES) using Next-Generation Sequencing (NGS) is becoming increasingly popular in the field of human genetics. As a diagnostic tool, this technology can reduce the duration of the diagnostic process for several patients and has mostly made a significant contribution to the identification of new genes responsible for causing diseases. Considering the diverse range of phenotypic presentations of the diagnosis, NGS has the potential to uncover causative mutations, including de novo, new, and familial variants, related to epileptic syndromes and significantly enhance molecular diagnosis. The present study centres on the potential applications of next-generation exome sequencing in clinical diagnostics and the challenges encountered in the data processing of such data.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143966130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CRISPR/Cas9 Technology for Modifying Immune Checkpoint in CAR-T Cell Therapy for Hematopoietic Malignancies.","authors":"Forough Shams, Elham Sharif, Hajar Abbasi-Kenarsari, Nader Hashemi, Masoumeh Sadat Hosseini, Neda Heidari, Effat Noori, Ali Hossein Amini, Maryam Bazrgar, Maryam Rouhani, Yong Teng","doi":"10.2174/0115665232357078250331180413","DOIUrl":"https://doi.org/10.2174/0115665232357078250331180413","url":null,"abstract":"<p><p>Hematologic malignancies, which arise from dysregulation of hematopoiesis, are a group of cancers originating in cells with diminished capacity to differentiate into mature progeny and accumulating immature cells in blood-forming tissues such as lymph nodes and bone marrow. Immune- targeted therapies, such as Immune Checkpoint Blockade (ICB), chimeric antigen receptor T (CAR-T) cell therapy, and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system, a precise, popular, and versatile genome engineering tool, have opened new avenues for the treatment of malignancies. Targeting immune checkpoints has revolutionized FDA approval in cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), PD-1 (programmed death-1), and PDL1. According to the ICB and CAR techniques, the production of efficient CAR-T cells depends on the successful genetic modification of T cells, making them less susceptible to immune escape and suppression by cancer cells, which results in reduced off-target toxicity. Therefore, CRISPR/Cas9 has revolutionized the immune checkpoint-based approach for CAR-T cell therapy of hematologic malignancy. Continued research and clinical trials will undoubtedly pave the way for further advances in this field, ultimately benefiting patients and improving outcomes.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143970339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current gene therapyPub Date : 2025-04-11DOI: 10.2174/0115665232356703250325075309
Ozal Beylerli, Ilgiz Gareev, Elmar Musaev, Tatiana Ilyasova, Sergey Roumiantsev, Vladimir Chekhonin
{"title":"Non-coding RNAs-based Therapy and Angiogenesis: A New Era for the Management of Gliomas.","authors":"Ozal Beylerli, Ilgiz Gareev, Elmar Musaev, Tatiana Ilyasova, Sergey Roumiantsev, Vladimir Chekhonin","doi":"10.2174/0115665232356703250325075309","DOIUrl":"https://doi.org/10.2174/0115665232356703250325075309","url":null,"abstract":"<p><p>The relentless pursuit of understanding and combating glioblastoma (GBM), one of the most formidable foes in the realm of cancer, requires a deeper exploration of its intricate dynamics. Gliomas, particularly GBM, are known for their lethal nature, and a significant aspect of their pathogenesis lies in their ability to manipulate the blood vessels that sustain them. This complex relationship is governed by a multitude of molecular mechanisms involving a diverse array of cell types within the tumor microenvironment. Central to this intricate web of regulation are non-coding RNAs (ncRNAs), enigmatic molecules that have recently emerged as key players in cancer biology. These ncRNAs wield a remarkable influence on gene expression, often via epigenetic modifications and intricate control over angiogenesis-related molecules. Their role in GBM angiogenesis adds another layer of complexity to our understanding of this disease. In the realm of cancer therapeutics, targeting angiogenesis has become a prominent strategy. However, the efficacy of current antiangiogenic treatments against GBM is often transient, as these tumors can rapidly develop resistance, becoming even more aggressive. GBM employs a diverse set of strategies to foster its abnormal vasculature, which, in turn, holds the key to understanding why anti-angiogenic therapies often fall short of expectations. This review aims to shed light on potential strategies and novel perspectives to overcome GBM 's resistance to anti-angiogenic therapy. By exploring innovative approaches, including those centered on ncRNAs, we strive to chart a course toward more effective treatments. This journey into the depths of GBM 's complexities offers not only hope but also a blueprint for future research and therapeutic development. As we uncover the intricate mechanisms at play, we inch closer to the day when GBM is no longer an insurmountable adversary in the fight against cancer.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143979117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current gene therapyPub Date : 2025-03-24DOI: 10.2174/0115665232353538250318075057
Saleem Ahmad, Hanif Khan, Njoka Irene Muthoni, Mohammed Alissa, Awaji Y Safhi, Fahad Y Sabei, Osama Abdulaziz, Khadijah Hassan Khan, Essam H Ibrahim, Safir Ullah Khan
{"title":"Riding the Wave of Progress: Examining the Current Landscape and Future Potential of MicroRNAs in Cancer Gene Therapy.","authors":"Saleem Ahmad, Hanif Khan, Njoka Irene Muthoni, Mohammed Alissa, Awaji Y Safhi, Fahad Y Sabei, Osama Abdulaziz, Khadijah Hassan Khan, Essam H Ibrahim, Safir Ullah Khan","doi":"10.2174/0115665232353538250318075057","DOIUrl":"10.2174/0115665232353538250318075057","url":null,"abstract":"<p><p>MicroRNAs, commonly referred to as miRNAs, exert a significant impact on cellular processes by coordinating post-transcriptional gene regulation. These non-coding RNAs, which are only 22 nucleotides long, form a part of the RNA-induced silencing complex (RISC) and play a crucial role in regulating gene expression. Their complex participation in cell proliferation, differentiation, and death highlights their crucial role in maintaining cellular balance. MicroRNAs have become significant contributors in the complex field of cancer biology, operating beyond the usual tasks of cells. Their dysregulation is closely intertwined with cancer initiation and development. miRNAs act as cellular regulators and regulate complex processes of gene expression. Disruption of this regulation can result in tumor development. This review article explores the intricate process of miRNA biosynthesis and its mechanisms, providing insights into its complex interactions with cancer. It also discusses the exciting field of miRNA-based cancer treatment. Exploring the therapeutic possibilities of these small RNA molecules presents opportunities for precision medicine, introducing a new age where miRNAs can be utilized to create targeted therapeutic interventions that mainly address the abnormal genetic characteristics that cause tumor formation. miRNAs provide a harmonious balance between understanding their biology and utilizing their therapeutic potential in cancer treatment. However, they also serve as conductors and possible therapeutic instruments in the symphony of molecular biology for gene therapy.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}