The Antimicrobial Peptide Pipeline: A Bacteria-Centric AMP Predictor.

IF 3.8 4区 医学 Q2 GENETICS & HEREDITY
Werner Pieter Veldsman, Qi Zhang, Qian Zhao, Lu Zhang, Zou Yuanjie
{"title":"The Antimicrobial Peptide Pipeline: A Bacteria-Centric AMP Predictor.","authors":"Werner Pieter Veldsman, Qi Zhang, Qian Zhao, Lu Zhang, Zou Yuanjie","doi":"10.2174/0115665232343790250120071445","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Antimicrobial peptides (AMPs), unlike antibiotics, are encoded in genomes. AMPs are exported from the cell after expression and translation. In the case of bacteria, the exported peptides target other microbes to give the producing bacterium a competitive edge. While AMPs are sought after for their similar antimicrobial activity to traditional antibiotics, it is difficult to predict which combinations of amino acids will confer antimicrobial activity. Many computer algorithms have been designed to predict whether a sequence of amino acids will exhibit antimicrobial activity, but the vast majority of validated AMPs in databases are still of eukaryotic origin. This defies common sense since the vast majority of life on Earth is prokaryotic.</p><p><strong>Methods: </strong>The antimicrobial peptide pipeline, presented here, is a bacteria-centric AMP predictor that predicts AMPs by taking design inspiration from the sequence properties of bacterial genomes with the intention to improve the detection of naturally occurring bacterial AMPs. The pipeline integrates multiple concepts of comparative biology to search for candidate AMPs at the primary, secondary, and tertiary peptide structure levels.</p><p><strong>Results: </strong>Results showed that the antimicrobial peptide pipeline identifies known AMPs that are missed by state-of-the-art AMP predictors and that the pipeline yields more AMP candidates from real bacterial genomes than from fake genomes, with the rate of AMP detection being significantly higher in the genomes of six nosocomial pathogens than in the fake genomes.</p><p><strong>Conclusion: </strong>This bacteria-centric AMP pipeline enhances the detection of bacterial AMPs by incorporating sequence properties unique to bacterial genomes. It complements existing tools, addressing gaps in AMP detection and providing a promising avenue for discovering novel antimicrobial peptides.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232343790250120071445","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Antimicrobial peptides (AMPs), unlike antibiotics, are encoded in genomes. AMPs are exported from the cell after expression and translation. In the case of bacteria, the exported peptides target other microbes to give the producing bacterium a competitive edge. While AMPs are sought after for their similar antimicrobial activity to traditional antibiotics, it is difficult to predict which combinations of amino acids will confer antimicrobial activity. Many computer algorithms have been designed to predict whether a sequence of amino acids will exhibit antimicrobial activity, but the vast majority of validated AMPs in databases are still of eukaryotic origin. This defies common sense since the vast majority of life on Earth is prokaryotic.

Methods: The antimicrobial peptide pipeline, presented here, is a bacteria-centric AMP predictor that predicts AMPs by taking design inspiration from the sequence properties of bacterial genomes with the intention to improve the detection of naturally occurring bacterial AMPs. The pipeline integrates multiple concepts of comparative biology to search for candidate AMPs at the primary, secondary, and tertiary peptide structure levels.

Results: Results showed that the antimicrobial peptide pipeline identifies known AMPs that are missed by state-of-the-art AMP predictors and that the pipeline yields more AMP candidates from real bacterial genomes than from fake genomes, with the rate of AMP detection being significantly higher in the genomes of six nosocomial pathogens than in the fake genomes.

Conclusion: This bacteria-centric AMP pipeline enhances the detection of bacterial AMPs by incorporating sequence properties unique to bacterial genomes. It complements existing tools, addressing gaps in AMP detection and providing a promising avenue for discovering novel antimicrobial peptides.

抗菌肽管道:以细菌为中心的AMP预测器。
与抗生素不同,抗菌肽(AMPs)在基因组中编码。amp经过表达和翻译后从细胞中输出。以细菌为例,输出的肽以其他微生物为目标,使生产细菌具有竞争优势。虽然amp因其与传统抗生素相似的抗菌活性而受到追捧,但很难预测哪种氨基酸组合将具有抗菌活性。许多计算机算法已经被设计用来预测氨基酸序列是否会表现出抗菌活性,但数据库中绝大多数经过验证的amp仍然来自真核生物。这有违常理,因为地球上绝大多数生命都是原核生物。方法:本文介绍的抗菌肽管道是一种以细菌为中心的AMP预测器,它通过从细菌基因组的序列特性中获得设计灵感来预测AMP,旨在提高对天然细菌AMP的检测。该管道整合了比较生物学的多个概念,以在一级,二级和三级肽结构水平上搜索候选amp。结果:结果表明,抗菌肽管道识别出了最先进的AMP预测器无法识别的已知AMP,并且该管道从真实细菌基因组中产生的AMP候选物比从假基因组中产生的AMP候选物更多,其中6种医院病原体基因组的AMP检出率明显高于假基因组。结论:这种以细菌为中心的AMP管道结合了细菌基因组特有的序列特性,增强了细菌AMP的检测能力。它补充了现有的工具,解决了AMP检测的空白,并为发现新的抗菌肽提供了一个有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current gene therapy
Current gene therapy 医学-遗传学
CiteScore
6.70
自引率
2.80%
发文量
46
期刊介绍: Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases. Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信