{"title":"Amplitude modulation and nonlinear dynamics of small amplitude ion-acoustic waves in five component cometary plasmas","authors":"Debaditya Kolay, Debjit Dutta, Biswajit Sahu","doi":"10.1002/ctpp.202400008","DOIUrl":"10.1002/ctpp.202400008","url":null,"abstract":"<p>The formation and propagation dynamics of the finite-amplitude ion-acoustic wave (IAW) structures (e.g., soliton, breather, rogue wave, etc.) is theoretically investigated in a plasma comprising of kappa distributed solar and cometary electrons of different temperatures, a hot <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 <msup>\u0000 <mi>O</mi>\u0000 <mo>+</mo>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$$ {mathrm{H}}_3{mathrm{O}}^{+} $$</annotation>\u0000 </semantics></math> drift ion component, and a pair of oppositely charged oxygen ion components. The modified-KdV (mKdV) equation is derived in order to study the propagation dynamics of the ion-acoustic solitary wave (IASW). It is then converted into the nonlinear Schrödinger equation (NLS) through appropriate algebraic manipulation in order to observe the amplitude modulation of the IAWs. Also, the appearance of envelope soliton and the possibility of breather structure formation have been studied from the NLS equation. The dependence of plasma parameters on the formation and propagation of IAW structures has been briefly discussed. The modified-KdV equation is reduced in a dynamical system through the application of coordinate transformation. The existence of finite-amplitude nonlinear and supernonlinear IAWs is demonstrated by phase plane analysis. Due to the fact that the results are primarily associated with cometary plasma, they possibly provide greater insight of the nonlinear characteristics of cometary plasma.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141108476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinetic theory of weakly ionized plasma and electrolyte mixtures including Onsager matrix and frequency dispersion effects","authors":"W. Ebeling","doi":"10.1002/ctpp.202300161","DOIUrl":"10.1002/ctpp.202300161","url":null,"abstract":"<p>We summarize the method of hydrodynamic approximation for weakly ionized plasmas developed with Klimontovich in 1962 and give a generalization to many—component systems using Onsagers matrix theory and including dispersion effects. We develop the conductivity theory of complex plasma and electrolyte mixtures based on the model of charged hard spheres with given non-additive contact distances, including frequency-dependent electric fields. These generalizations are made with the aim to allow applications to complex natural systems as atmospheric plasmas and seawater. Finally, we give as an example a numerical calculation of the single ion conductivities of a six-component seawater model.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 5","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202300161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of electron capture in positron-hydrogen scattering under dense semi-classical plasmas","authors":"Kamalika Das, Netai Das, Arijit Ghoshal","doi":"10.1002/ctpp.202400012","DOIUrl":"10.1002/ctpp.202400012","url":null,"abstract":"<p>The scattering dynamics of electron capture in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>e</mi>\u0000 <mo>+</mo>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$$ {mathrm{e}}^{+} $$</annotation>\u0000 </semantics></math>-H(1 s) scattering under dense semi-classical plasma (DSCP) environments has been investigated theoretically. Coupled multi-channel two-body Lippmann-Schwinger equations have been solved by retaining <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>e</mi>\u0000 <mo>+</mo>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$$ {mathrm{e}}^{+} $$</annotation>\u0000 </semantics></math>+H(1 s) and p + Ps(1 s) channels to calculate the cross sections (CS) of the electron capture process at intermediate and high incident energies. The effective interaction of the plasma charged particles is modelled by a pseudopotential which is a function of two parameters, namely the plasma screening strength and the de Broglie wavelength. A detailed study is made to explore the changes in the CSs of the above-mentioned process with respect to the variation in the plasma screening strength and de Broglie wavelength. Significant changes are found to take place, when the screening strength and the de Broglie wavelength are varied. Specifically, the sharp minimum in the differential CS moves toward the forward direction with increasing de Broglie wavelength at a given screening strength.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 10","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasma emission spectroscopy diagnosis of a direct current reverse-brush electrode discharge","authors":"Xingbao Lyu, Zhiyong Li, Yiqun Ma, Ying Wang, Chengxun Yuan, Anatoly Kudryavtsev, Zhongxiang Zhou","doi":"10.1002/ctpp.202400032","DOIUrl":"10.1002/ctpp.202400032","url":null,"abstract":"<p>In this work, emission spectra measurements from direct current (DC) reverse-brush discharge plasmas were used to elucidate the energy level transition processes corresponding to each spectral line based on the mechanism of emission spectrum generation. The axial distribution patterns of the spectral line intensity and the electron excitation temperature in the electrode gap and post-cathode space were systematically investigated. By comparing the acquired experimental results, it was observed that both the relative intensity of the plasma emission spectra and the electron excitation temperature in the electrode gap were higher than in the post-cathode space, while their axial distribution trends exhibited an initial increase followed by a decrease. Additionally, the impact of the discharge gas pressure, reverse-brush electrode thickness, and the number of electrode openings on the emission spectral line intensity and electron excitation temperature in the electrode gap were explored. Explanations for the underlying physical mechanisms were also provided.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 10","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140970714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Picture: Contrib. Plasma Phys. 04/2024","authors":"","doi":"10.1002/ctpp.880","DOIUrl":"https://doi.org/10.1002/ctpp.880","url":null,"abstract":"<p>(a) Electron current density, z-component; (b) Electric field intensity (V/m); filament line: electron flow. Fig.6 of the paper by Yiqun Ma et al. https://doi.org/10.1002/ctpp.202300169\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 4","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.880","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140949289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. O. Makarov, D. P. Coster, T. Gleiter, D. Brida, M. Muraca, R. Dux, P. David, B. Kurzan, X. Bonnin, M. O'Mullane, ASDEX Upgrade Team
{"title":"First SOLPS-ITER simulations of ASDEX Upgrade partially detached H-mode with boron impurity: The missing radiation at the outer strike-point region","authors":"S. O. Makarov, D. P. Coster, T. Gleiter, D. Brida, M. Muraca, R. Dux, P. David, B. Kurzan, X. Bonnin, M. O'Mullane, ASDEX Upgrade Team","doi":"10.1002/ctpp.202300139","DOIUrl":"10.1002/ctpp.202300139","url":null,"abstract":"<p>Partially detached H-modes are the baseline regime for the future ITER operation. The ASDEX Upgrade partially detached H-mode is modeled using the SOLPS-ITER code with drifts enabled and compared with experimental data. For the first time, boron (B) impurity is simulated in the Scrape-off layer (SOL) and divertor. A comparison between divertor diagnostics and discrepancies between Langmuir probe and Divertor Thomson scattering/Stark broadening diagnostic are discussed. In the modeling, experimental target profiles are reproduced if the experimental level of radiation in the SOL and divertor is achieved using nitrogen (N) impurity seeding. Bolometry measurements detect substantial radiation from the partially detached outer strike point. With B radiation, this maximum in bolometry data is reproduced in the modeling, which is not possible with N alone.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 7-8","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202300139","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical validation of Yukawa fluid excitations within the quasilocalized charge approximation (QLCA) theory","authors":"Prince Kumar, Devendra Sharma","doi":"10.1002/ctpp.202400026","DOIUrl":"10.1002/ctpp.202400026","url":null,"abstract":"<p>A first principle molecular dynamics (MD) simulation study on the nonlinear excitations in a quasi-localized state of a Yukawa system is presented to validate the findings of the nonlinear quasi-localized charge approximation (QLCA) model. Unlike solids or gases, quasi-localized states lack certain simplifying features, such as the ability to assume a fixed shape or volume, and they combine large displacements with strong interactions, further complicating the theoretical underpinnings of their behavior. In a recent paper [P. Kumar and D. Sharma, Physics of Plasmas 30 (2023)], the nonlinear QLCA model was applied to characterize the nonlinear excitations in a quasi-localized state of a Yukawa system, as existing continuum models have shown limited success in this regime. The simulation data presented with the screening and coupling parameters show a close agreement with the QLCA model findings. The MD simulations validate the prediction made by the QLCA model that the properties of a soliton remain unaffected by variations in the coupling parameter. The prediction made by QLCA regarding the formation of multiple solitons at higher screening parameter values has also been confirmed by the MD simulation data. The possibility of the formation of rarefactive solitons at relatively high screening parameter values within the QLCA model is also discussed.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 6","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics and reorganization of dust chains in a complex plasma","authors":"Yang Liu, Baoxia Li, Guannan Shi, Feng Huang","doi":"10.1002/ctpp.202300179","DOIUrl":"10.1002/ctpp.202300179","url":null,"abstract":"<p>The formation and dynamics of vertical dust chains in the radio frequency discharge plasma sheath have been investigated. The spatiotemporal evolution diagram allows the visualization of the dust chain formation process as well as the oscillation phenomenon. A clear stratification was observed, and spatially nonuniform self-organizing behavior of the dust chains, such as fractures and reconnections, was also observed, showing that the lower layers of the large-grained chains are less restricted, softer, and more prone to rearrangement. The spatial distribution characteristics of the charged particles in the sheath and the modified two-particle model, which takes into account the interparticle attraction, partially explain the mechanisms of the fracture and reorganization behavior of the dust chains.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 9","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of strongly correlated quantum systems from an extended Singwi-Tosi-Land-Sjölander closure for the BBGKY hierarchy","authors":"Hanno Kählert","doi":"10.1002/ctpp.202400018","DOIUrl":"10.1002/ctpp.202400018","url":null,"abstract":"<p>The BBGKY hierarchy in the Wigner representation is used with an extended Singwi-Tosi-Land-Sjölander (STLS) ansatz for the two-particle distribution function [H. Kählert, G. J. Kalman, and M. Bonitz, Phys. Rev. E 90, 011101 (2014)] to study the density response function and the dispersion relation of collective modes in a strongly coupled quantum system. It is shown that the local field correction (LFC) and the dispersion relation reduce to the results of the Quasi-Localized Charge Approximation (QLCA) in the classical limit. In the quantum case, the LFC acquires a frequency-dependence, similar to the quantum version of the STLS theory. The dispersion relation is governed by a generalization of the QLCA dynamical matrix. The results are expected to be relevant for the analysis of collective modes in quantum liquids with strong correlations.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 6","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202400018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}