{"title":"Cover Picture: Contrib. Plasma Phys. 03/2025","authors":"","doi":"10.1002/ctpp.202590005","DOIUrl":"https://doi.org/10.1002/ctpp.202590005","url":null,"abstract":"<p>Diagram of beam distribution of the magnetic trap at 50 ns with different beam incidence velocities. Green points represent protons, red points represent electrons and blue lines represent magnetic induction lines. Part of Fig. 6 of the paper by Fang-Ping Wang et al. https://doi.org/10.1002/ctpp.202400040\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202590005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Picture: Contrib. Plasma Phys. 02/2025","authors":"","doi":"10.1002/ctpp.202590003","DOIUrl":"https://doi.org/10.1002/ctpp.202590003","url":null,"abstract":"<p>Normalized vector potential (<i>a<sub>y</sub></i>), the produced wakefield (<i>E<sub>x</sub></i>), the momentum (<i>p<sub>x</sub></i>) and the electron density (<i>n<sub>x</sub></i>) for hydrogen atoms density/pre-ionized plasma density <i>n</i><sub>0</sub> = 0.01<i>n<sub>cr</sub></i> at time 810 fs for the field-ionized plasma (panel a) and the pre-ionized plasma (panel b) and normalized vector potential variation <i>a</i><sub>0</sub> = 1 (in panels a1 and b1), <i>a</i><sub>0</sub> = 2 (in panels a2 and b2), and <i>a</i><sub>0</sub> = 3 (in panels a3 and b3). Fig. 4 of the paper by Elnaz Khalilzadeh et al. https://doi.org/10.1002/ctpp.202400022\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202590003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Picture: Contrib. Plasma Phys. 01/2025","authors":"","doi":"10.1002/ctpp.202590001","DOIUrl":"https://doi.org/10.1002/ctpp.202590001","url":null,"abstract":"<p>Plot of temperature inside the rock as a function of time at 70 kV. Fig. 8 of the paper by X. Zhu et al. https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202400058<figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202590001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ronak Desai, Thomas Zhang, John J. Felice, Ricky Oropeza, Joseph R. Smith, Alona Kryshchenko, Chris Orban, Michael L. Dexter, Anil K. Patnaik
{"title":"Applying Machine-Learning Methods to Laser Acceleration of Protons: Lessons Learned From Synthetic Data","authors":"Ronak Desai, Thomas Zhang, John J. Felice, Ricky Oropeza, Joseph R. Smith, Alona Kryshchenko, Chris Orban, Michael L. Dexter, Anil K. Patnaik","doi":"10.1002/ctpp.202400080","DOIUrl":"https://doi.org/10.1002/ctpp.202400080","url":null,"abstract":"<p>In this study, we consider three different machine-learning methods—a three-hidden-layer neural network, support vector regression, and Gaussian process regression—and compare how well they can learn from a synthetic data set for proton acceleration in the Target Normal Sheath Acceleration regime. The synthetic data set was generated from a previously published theoretical model by Fuchs et al. 2005 that we modified. Once trained, these machine-learning methods can assist with efforts to maximize the peak proton energy, or with the more general problem of configuring the laser system to produce a proton energy spectrum with desired characteristics. In our study, we focus on both the accuracy of the machine-learning methods and the performance on one GPU including memory consumption. Although it is arguably the least sophisticated machine-learning model we considered, support vector regression performed very well in our tests.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202400080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Picture: Contrib. Plasma Phys. 10/2024","authors":"","doi":"10.1002/ctpp.202490017","DOIUrl":"https://doi.org/10.1002/ctpp.202490017","url":null,"abstract":"<p>Breakdown field distortion of three liquid media: (a) Electric field under deionized water; (b) electric field underwater-based drilling fluid action; (c) electric field under oil-based drilling fluid action. Fig. 7 of the paper by X. Zhu et al. https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202400035<figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 10","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202490017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum: About the Quantum-Kinetic Derivation of Boundary Conditions for Quasiparticle Boltzmann Equations at Interfaces","authors":"","doi":"10.1002/ctpp.202400119","DOIUrl":"https://doi.org/10.1002/ctpp.202400119","url":null,"abstract":"<p>F. X. Bronold and F. Willert. About the quantum-kinetic derivation of boundary conditions for quasiparticle Boltzmann equations at interfaces. Contributions to Plasma Physics. 2024; 64:e202300168. https://doi.org/10.1002/ctpp.202300168.</p><p>We sincerely regret the lapses.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 10","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202400119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}