Effect of Separated Spin Densities of Electrons on the Propagation Characteristics of Kinetic Alfvenic Solitons

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Muhammad Adnan, Hina Zaib,  Ikramullah, Fida Younus Khattak
{"title":"Effect of Separated Spin Densities of Electrons on the Propagation Characteristics of Kinetic Alfvenic Solitons","authors":"Muhammad Adnan,&nbsp;Hina Zaib,&nbsp; Ikramullah,&nbsp;Fida Younus Khattak","doi":"10.1002/ctpp.70011","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study investigates how spin polarization, arising from spin mismatch between electron populations, influences the propagation of kinetic Alfvén waves (KAWs) in a low-beta electron-ion plasma. By analyzing the impact of spin-polarized electron densities in distinct spin states, the research examines modifications to wave dispersion in both linear and nonlinear regimes. In the linear analysis, the study derives and examines the coupled dispersion relation for two dominant wave modes: one governed by Alfvénic dynamics and the other by acoustic interactions. The findings indicate that spin polarization increases the phase speed in the Alfvénic regime, while a larger spin mismatch significantly reduces the phase speed in the acoustic regime. Additionally, the interplay between perpendicular wave characteristics and ion gyration effects modifies wave dispersion, particularly for shorter wavelengths. The study also highlights the role of wave propagation direction in shaping frequency characteristics. In the nonlinear regime, the evolution of KAWs is analyzed using the Reductive Perturbation Technique, leading to a mathematical framework that describes solitary wave structures. The results show that spin polarization suppresses the amplitude and narrows the width of these solitons, while higher electron degeneracy counteracts these effects, contributing to their stabilization. Furthermore, wave obliqueness and the Mach number play a significant role in determining the spatial characteristics and energy distribution of the solitons. These insights provide a deeper understanding of KAW behavior in spin-polarized plasmas, which is relevant to space and astrophysical environments where such conditions prevail.</p>\n </div>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.70011","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates how spin polarization, arising from spin mismatch between electron populations, influences the propagation of kinetic Alfvén waves (KAWs) in a low-beta electron-ion plasma. By analyzing the impact of spin-polarized electron densities in distinct spin states, the research examines modifications to wave dispersion in both linear and nonlinear regimes. In the linear analysis, the study derives and examines the coupled dispersion relation for two dominant wave modes: one governed by Alfvénic dynamics and the other by acoustic interactions. The findings indicate that spin polarization increases the phase speed in the Alfvénic regime, while a larger spin mismatch significantly reduces the phase speed in the acoustic regime. Additionally, the interplay between perpendicular wave characteristics and ion gyration effects modifies wave dispersion, particularly for shorter wavelengths. The study also highlights the role of wave propagation direction in shaping frequency characteristics. In the nonlinear regime, the evolution of KAWs is analyzed using the Reductive Perturbation Technique, leading to a mathematical framework that describes solitary wave structures. The results show that spin polarization suppresses the amplitude and narrows the width of these solitons, while higher electron degeneracy counteracts these effects, contributing to their stabilization. Furthermore, wave obliqueness and the Mach number play a significant role in determining the spatial characteristics and energy distribution of the solitons. These insights provide a deeper understanding of KAW behavior in spin-polarized plasmas, which is relevant to space and astrophysical environments where such conditions prevail.

电子分离自旋密度对动态Alfvenic孤子传播特性的影响
本研究探讨了在低β电子-离子等离子体中,由电子居群之间的自旋失配引起的自旋极化如何影响动力学alfvsamn波(kaw)的传播。通过分析不同自旋状态下自旋极化电子密度的影响,研究了线性和非线性状态下波色散的变化。在线性分析中,研究推导并检验了两种主要波模的耦合色散关系:一种是由alfv录影带动力学控制的,另一种是由声学相互作用控制的。结果表明,自旋极化增加了alfv晶格区相速度,而较大的自旋失配则显著降低了声学区相速度。此外,垂直波特性和离子旋转效应之间的相互作用改变了波的色散,特别是对于较短波长。研究还强调了波的传播方向对频率特性的影响。在非线性状态下,利用约化微扰技术分析了kaw的演化,得到了描述孤波结构的数学框架。结果表明,自旋极化抑制了这些孤子的振幅和宽度,而较高的电子简并抵消了这些影响,有助于它们的稳定。波倾角和马赫数对孤子的空间特性和能量分布有重要影响。这些见解提供了对自旋极化等离子体中的KAW行为的更深入理解,这与这种条件普遍存在的空间和天体物理环境有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Plasma Physics
Contributions to Plasma Physics 物理-物理:流体与等离子体
CiteScore
2.90
自引率
12.50%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Aims and Scope of Contributions to Plasma Physics: Basic physics of low-temperature plasmas; Strongly correlated non-ideal plasmas; Dusty Plasmas; Plasma discharges - microplasmas, reactive, and atmospheric pressure plasmas; Plasma diagnostics; Plasma-surface interaction; Plasma technology; Plasma medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信