Jennifer Upfold, Agnès Rejasse, Christina Nielsen-Leroux, Annette Bruun Jensen, Vincent Sanchis-Borja
{"title":"The immunostimulatory role of an Enterococcus-dominated gut microbiota in host protection against bacterial and fungal pathogens in Galleria mellonella larvae","authors":"Jennifer Upfold, Agnès Rejasse, Christina Nielsen-Leroux, Annette Bruun Jensen, Vincent Sanchis-Borja","doi":"10.3389/finsc.2023.1260333","DOIUrl":"https://doi.org/10.3389/finsc.2023.1260333","url":null,"abstract":"Understanding the intricate interplay between the gut microbiota and the immune response in insects is crucial, given its diverse impact on the pathogenesis of various microbial species. The microbiota’s modulation of the host immune system is one such mechanism, although its complete impact on immune responses remains elusive. This study investigated the tripartite interaction between the gut microbiota, pathogens, and the host’s response in Galleria mellonella larvae reared under axenic (sterile) and conventional (non-sterile) conditions. The influence of the microbiota on host fitness during infections was evaluated via two different routes: oral infection induced by Bacillus thuringiensis subsp. galleriae ( Btg ), and topical infection induced by Metarhizium robertsii ( Mr ). We observed that larvae without a microbiota can successfully fulfill their life cycle, albeit with more variation in their developmental time. We subsequently performed survival assays on final-instar larvae, using the median lethal dose (LD 50 ) of Btg and Mr . Our findings indicated that axenic larvae were more vulnerable to an oral infection of Btg ; specifically, a dose that was calculated to be half-lethal for the conventional group resulted in a 90%–100% mortality rate in the axenic group. Through a dual-analysis experimental design, we could identify the status of the gut microbiota using 16S rRNA sequencing and assess the level of immune-related gene expression in the same group of larvae at basal conditions and during infection. This analysis revealed that the microbiota of our conventionally reared population was dominated entirely by four Enterococcus species, and these species potentially stimulated the immune response in the gut, due to the increased basal expression of two antimicrobial peptides (AMPs)—gallerimycin and gloverin—in the conventional larvae compared with the axenic larvae. Furthermore, Enterococcus mundtii , isolated from the gut of conventional larvae, showed inhibition activity against Btg in vitro . Lastly, other immune effectors, namely, phenoloxidase activity in the hemolymph and total reactive oxygen/nitrogen species (ROS/RNS) in the gut, were tested to further investigate the extent of the stimulation of the microbiota on the immune response. These findings highlight the immune-modulatory role of the Enterococcus- dominated gut microbiota, an increasingly reported microbiota assemblage of laboratory populations of Lepidoptera, and its influence on the host’s response to oral and topical infections.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"14 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136377102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gilson Chipabika, Philemon H. Sohati, Fathiya Mbarak Khamis, Patrick C. Chikoti, Robert Copeland, Levi Ombura, Paul W. Kachapulula, Tamara K. Tonga, Saliou Niassy, Subramanian Sevgan
{"title":"Abundance, diversity and richness of natural enemies of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in Zambia","authors":"Gilson Chipabika, Philemon H. Sohati, Fathiya Mbarak Khamis, Patrick C. Chikoti, Robert Copeland, Levi Ombura, Paul W. Kachapulula, Tamara K. Tonga, Saliou Niassy, Subramanian Sevgan","doi":"10.3389/finsc.2023.1091084","DOIUrl":"https://doi.org/10.3389/finsc.2023.1091084","url":null,"abstract":"The fall armyworm (FAW), Spodoptera frugiperda , an invasive pest originating from the Americas is a serious pest threatening cereal production and food security in Zambia. We studied the prevalence and abundance of natural enemies of FAW in three Agroecological regions (AERs I, II, and III) to identify those that could potentially serve as bio-control agents. Sampling of FAW parasitoids and predators was done along trunk roads at intervals of 10 km. Molecular sequence analysis and morphological characterization were used to identify natural enemies. Over 11 species of FAW natural enemies, including egg, egg-larval, and larval parasitoids, and predators, were identified in Zambia. The mean number of natural enemies and species richness was higher in AER I and IIa. Consequently, egg parasitism was highest in those two regions, at 24.5% and 12.2%, respectively. Larvae parasitism was highest in AER I (4.8%) and AER III (1.9), although no significant differences were observed. The most abundant and widely distributed parasitoid was Drino sp. (Diptera: Tachinidae), while Rhynocoris segmentarius (Germar) (Hemiptera: Reduviidae) and Belanogaster sp. (Hymenoptera: Vespidae) were the most prevalent predators. Our study reveals the presence of two natural enemies belonging to the genus Tiphia and Micromeriella , uncommon to FAW. Significant differences in the number of parasitoids were observed in polycropping, with the highest recovery of 12 ± 10% from maize + cowpeas + pumpkin and watermelon mixed cropping. The higher the rainfall, the lower the number of natural enemies recorded. Variations in rainfall patterns which affect FAW availability, cropping systems and the three AERs may explain natural enemies’ species diversity in Zambia. The information provided in this study can aid the development of a national biological control programme for sustainable management of fall armyworm.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"139 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135616921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neda Arad, Jorge R. Paredes-Montero, Mosharrof Hossain Mondal, Nathaniel Ponvert, Judith K. Brown
{"title":"RNA interference-mediated knockdown of genes involved in sugar transport and metabolism disrupts psyllid Bactericera cockerelli (Order: Hemiptera) gut physiology and results in high mortality","authors":"Neda Arad, Jorge R. Paredes-Montero, Mosharrof Hossain Mondal, Nathaniel Ponvert, Judith K. Brown","doi":"10.3389/finsc.2023.1283334","DOIUrl":"https://doi.org/10.3389/finsc.2023.1283334","url":null,"abstract":"Introduction The causal agent of zebra chip of potato and vein-greening diseases of tomato is \" Candidatus Liberibacter solanacearum\" (CLso), a fastidious bacterium transmitted by the potato psyllid. In the absence of disease-resistant cultivars, disease management has relied on minimizing vector population size to reduce CLso transmission, which requires frequent insecticide applications. There is growing interest in the use of RNA interference (RNAi) technology to supplant traditional insecticides with biopesticides. This requires knowledge of genes essential for insect livelihood whose knockdown leads to significant mortality or other phenotypes. Such candidate genes can be evaluated by reverse genetics approaches to further corroborate predicted gene function. Methods Here, five potato psyllid genes involved in sugar homeostasis in the potato psyllid gut, α-glucosidase1 ( AGLU1 ), aquaporin2 ( AQP2 ), facilitated trehalose transporter1 ( TRET1 ), Trehalase1 ( TRE1 ), and Trehalase2 ( TRE2 ), were investigated as candidates for effective gene silencing. Potato psyllid dsRNAs were designed to optimize knockdown of gene targets. Third instar PoP nymphs were given a 48-hr ingestion-access period (IAP) on individual or groups of dsRNA in 20% sucrose. Mortality was recorded 0, 3, 5, 7, and 9 days post-IAP. Gene knockdown was analyzed 9 days post-IAP by quantitative real-time reverse-transcriptase polymerase chain reaction amplification. Results The individual or stacked dsRNA combinations resulted in 20-60% and 20-40% knockdown, respectively, while subsequent psyllid mortality ranged from 20-40% to >60% for single and stacked dsRNA combinations, respectively. Reverse genetics analysis showed that simultaneous knockdown of the five selected candidate genes with predicted functions in pathways involved in sugar-homeostasis, metabolism, and -transport yielded the highest mortality, when compared with single or combinations of targets. Discussion Results confirmed the functions afforded by psyllid gut genes responsible for osmotic homeostasis and sugar metabolism/transport are essential for livelihood, identifying them as potentially lucrative RNAi biopesticide targets and highlighted the translational relevance of targeting multiple nodes in a physiological pathway simultaneously.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"125 36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135883318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James A. Abendroth, Timothy W. Moural, Hongshuang Wei, Fang Zhu
{"title":"Roles of insect odorant binding proteins in communication and xenobiotic adaptation","authors":"James A. Abendroth, Timothy W. Moural, Hongshuang Wei, Fang Zhu","doi":"10.3389/finsc.2023.1274197","DOIUrl":"https://doi.org/10.3389/finsc.2023.1274197","url":null,"abstract":"Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their relevant receptors in the sensillum lymph. While traditionally considered essential for olfaction, recent research has revealed that OBPs are engaged in a diverse range of physiological functions in modulating chemical communication and defense. Over the past 10 years, emerging evidence suggests that OBPs play vital roles in purifying the perireceptor space from unwanted xenobiotics including plant volatiles and pesticides, potentially facilitating xenobiotic adaptation, such as host location, adaptation, and pesticide resistance. This multifunctionality can be attributed, in part, to their structural variability and effectiveness in transporting, sequestering, and concealing numerous hydrophobic molecules. Here, we firstly overviewed the classification and structural properties of OBPs in diverse insect orders. Subsequently, we discussed the myriad of functional roles of insect OBPs in communication and their adaptation to xenobiotics. By synthesizing the current knowledge in this field, our review paper contributes to a comprehensive understanding of the significance of insect OBPs in chemical ecology, xenobiotic adaptation, paving the way for future research in this fascinating area of study.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135351087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Insects as a model in behavioral ecology","authors":"C. Perl, Emily Baird","doi":"10.3389/finsc.2023.1298274","DOIUrl":"https://doi.org/10.3389/finsc.2023.1298274","url":null,"abstract":"","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"170 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139323380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RNAi turns 25:contributions and challenges in insect science","authors":"Subba Reddy Palli","doi":"10.3389/finsc.2023.1209478","DOIUrl":"https://doi.org/10.3389/finsc.2023.1209478","url":null,"abstract":"Since its discovery in 1998, RNA interference (RNAi), a Nobel prize-winning technology, made significant contributions to advances in biology because of its ability to mediate the knockdown of specific target genes. RNAi applications in medicine and agriculture have been explored with mixed success. The past 25 years of research on RNAi resulted in advances in our understanding of the mechanisms of its action, target specificity, and differential efficiency among animals and plants. RNAi played a major role in advances in insect biology. Did RNAi technology fully meet insect pest and disease vector management expectations? This review will discuss recent advances in the mechanisms of RNAi and its contributions to insect science. The remaining challenges, including delivery to the target site, differential efficiency, potential resistance development and possible solutions for the widespread use of this technology in insect management.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135590712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Focus on spotted lanternfly","authors":"Houping Liu, Xiaoyi Wang, M. Cooperband","doi":"10.3389/finsc.2023.1292590","DOIUrl":"https://doi.org/10.3389/finsc.2023.1292590","url":null,"abstract":"","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139323949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Macdonald Mubayiwa, Honest Machekano, Frank Chidawanyika, Brighton M. Mvumi, Bame Segaiso, Casper Nyamukondiwa
{"title":"Sub-optimal host plants have developmental and thermal fitness costs to the invasive fall armyworm","authors":"Macdonald Mubayiwa, Honest Machekano, Frank Chidawanyika, Brighton M. Mvumi, Bame Segaiso, Casper Nyamukondiwa","doi":"10.3389/finsc.2023.1204278","DOIUrl":"https://doi.org/10.3389/finsc.2023.1204278","url":null,"abstract":"The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) is a global invasive pest of cereals. Although this pest uses maize and sorghum as its main hosts, it is associated with a wide range of host plants due to its polyphagous nature. Despite the FAW's polyphagy being widely reported in literature, few studies have investigated the effects of the non-preferred conditions or forms (e.g., drought-stressed forms) of this pest’s hosts on its physiological and ecological fitness. Thus, the interactive effects of biotic and abiotic stresses on FAW fitness costs or benefits have not been specifically investigated. We therefore assessed the effects of host plant quality on the developmental rates and thermal tolerance of the FAW. Specifically, we reared FAW neonates on three hosts (maize, cowpeas, and pearl millet) under two treatments per host plant [unstressed (well watered) and stressed (water deprived)] until the adult stage. Larval growth rates and pupal weights were determined. Thermal tolerance traits viz critical thermal maxima (CT max ), critical thermal minima (CT min ), heat knockdown time (HKDT), chill-coma recovery time (CCRT), and supercooling points (SCPs) were measured for the emerging adults from each treatment. The results showed that suboptimal diets significantly prolonged the developmental time of FAW larvae and reduced their growth rates and ultimate body weights, but did not impair their full development. Suboptimal diets (comprising non-cereal plants and drought-stressed cereal plants) increased the number of larval instars to eight compared to six for optimal natural diets (unstressed maize and pearl millet). Apart from direct effects, in all cases, suboptimal diets significantly reduced the heat tolerance of FAWs, but their effect on cold tolerance was recorded only in select cases (e.g., SCP). These results suggest host plant effects on the physical and thermal fitness of FAW, indicating a considerable degree of resilience against multiple stressors. This pest’s resilience can present major drawbacks to its cultural management using suboptimal hosts (in crop rotations or intercrops) through its ability to survive on most host plants despite their water stress condition and gains in thermal fitness. The fate of FAW population persistence under multivariate environmental stresses is therefore not entirely subject to prior environmental host plant history or quality.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135293806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gard W. Otis, Benjamin A. Taylor, Heather R. Mattila
{"title":"Corrigendum: Invasion potential of hornets (Hymenoptera: Vespidae: Vespa spp.)","authors":"Gard W. Otis, Benjamin A. Taylor, Heather R. Mattila","doi":"10.3389/finsc.2023.1253176","DOIUrl":"https://doi.org/10.3389/finsc.2023.1253176","url":null,"abstract":"The corrected sentence appears below: \"[Vespa tropica has a broad natural distribution, from Afghanistan and Pakistan in the west to southeastern China, the Philippines, many islands of Indonesia, and New Guinea in the east (62).]\"A second correction has been made to . This section previously stated: \"[For example, the natural history information we have about V. tropica comes predominantly from studies in Japan. However, applying that knowledge to the invasion by this species in Guam would be of little value if the hornets that colonized the island arrived from a tropical locality such as Manila, Bangkok, or Chennai. For instance, mature V. tropica colonies in Japan are monogynous, have combs with a few hundred cells, and rear only a few dozen new","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135425214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Organic soil fertility management practices for the management of fall armyworm, Spodoptera frugiperda (J.E. Smith), in maize","authors":"Wakuma Bayissa, Asnake Abera, Jibril Temesgen, Gemechu Abera, Esayas Mendesil","doi":"10.3389/finsc.2023.1210719","DOIUrl":"https://doi.org/10.3389/finsc.2023.1210719","url":null,"abstract":"The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a polyphagous pest native to the Americas. It attacks several crops but in particular causes significant damage to maize, which is a staple crop in Africa. Organic soil amendments have an impact on the physical, chemical, and biological properties of soil, which enhance plant resistance to or tolerance of insect pests and also promote a diverse population of natural enemies of the pest. However, the practices followed for the management of crop residue and animal manure affect their use as organic soil amendments. A field experiment was conducted to evaluate the effect of maize residue and cattle manure incorporation into soil on FAW in the Mana and Omo Nada districts of the Jimma zone, southwest Ethiopia, during the 2018/19 cropping season. Treatment involved three factors: five different levels of maize residue retention (0%, 25%, 50%, 75%, and 100%), different cattle manure storage systems (control, open, steel roof, and grass roof), and two different districts (Mana and Omo Nada). These variables were organized in a randomized complete block design and replicated three times. The infestation and damage ratings were collected from 30 days after planting at 20-day intervals. The results indicated that maize plots with retained crop residue had a significant reduction in FAW infestation compared with plots without maize residue (control) in both study districts. Furthermore, manure-fertilized plants had a lower percentage of FAW infestation when compared with maize plots without cattle manure in both study districts. The lowest severity of FAW infestation was recorded in a plot with 100% of residue incorporated and treated with cattle manure stored under a grass roof in the Mana district. Therefore, conventional tillage with 100% maize residue incorporation and the application of cattle manure stored under a grass roof showed the best result for reducing FAW infestation in maize. However, further studies are important to determine the effect of treatments over seasons and locations on FAW infestation and maize yields.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135718986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}