{"title":"Defects analysis of ZnGa2O4 thin-film transistors and related properties study (Conference Presentation)","authors":"R. Horng","doi":"10.1117/12.2516745","DOIUrl":"https://doi.org/10.1117/12.2516745","url":null,"abstract":"","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"451 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116155976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Chandra, Daniel Franklin, Jared Cozart, A. Safaei, D. Chanda
{"title":"Metal-insulator transition-induced adaptive multispectral infrared camouflage (Conference Presentation)","authors":"S. Chandra, Daniel Franklin, Jared Cozart, A. Safaei, D. Chanda","doi":"10.1117/12.2508646","DOIUrl":"https://doi.org/10.1117/12.2508646","url":null,"abstract":"Performance of adaptive infrared camouflage is usually parameterized in terms of cycle-ability, response time, actuation mechanism, stability etc., however, one of the key components that has not been addressed so far is the spatial density of infrared information that can be encoded and actively manipulated for camouflaging.\u0000We report an adaptive infrared camouflage system that can be engineered to operate at any desired wavelength in the technologically relevant, infrared transparent 3 – 5 µm and 8 – 12 µm bands. We exploit the metal-insulator phase transition in VO2 to design an optical cavity coupled infrared absorber where the cavity length can be altered by controlling the VO2 phase. Cavity tuning is done by strategically placing the VO2 layer inside the optical cavity composed of a tri-layer architecture. In its insulating state VO2 is transparent to infrared such that incident light couples to the entire cavity length, however in the metallic state, VO2 behaves like a mirror and shortens the cavity length by reflecting ~80% of incident light. The Maxwell Garnett EMT describes the phase transition dependent optical response of the absorber better than the Bruggeman EMT when compared to the experimental results. We tailor the device parameters to demonstrate adaptive thermal camouflage of multispectral encoded infrared information on a pixelated designer surface with a pixel resolution (~20 µm) and density comparable to the industry standard for infrared sensors. We envision this work will pave the way for novel tunable optical devices for technological advancements in infrared tagging, camouflaging and anti-counterfeiting efforts.","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117124383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Annealing effect for NOx gas sensor based on ZnGa2O4 epi-layer grown by MOCVD (Conference Presentation)","authors":"M. Wu, Li-Chung Cheng, Chiung-Yi Huang, R. Horng","doi":"10.1117/12.2510042","DOIUrl":"https://doi.org/10.1117/12.2510042","url":null,"abstract":"The effects of annealing on gas sensing properties of NOx gas sensor based on novel material ZnGa2O4 epi-layer grown by MOCVD were studied. The metal-semiconductor-metal (MSM) structure sensor with Ti/Al/Ni (50/75/25 nm) electrode in the multilayers which were deposited by an E-gun evaporator and patterned by a lift-off process. The devices were annealed at 700 oC in N2 ambient for 1hr, and the sensing area is 30um x 250um. The results show that the sensitivity of the ZnGa2O4 gas sensor increases and the response time reduces after annealing. The sensitivity is defined as Rg/Ra, where Rg is the resistance with analyzed gases, and Ra is the resistance with the dry air. At the operation temperature 300oC, the sensitivity of sensors without thermal treatment are 1.026, 1.015, 1.009, 1.003, and 1 when exposed to NO concentration 6.25ppm, 1ppm, 500ppb, 250ppb, and 125ppb, respectively. After 700oC annealing for 1hr, the sensitivity remarkably increases to 52.108, 10.491, 7.744, 4.961, and 3.942 with the same NO concentration as mentioned above. Not only the sensitivity increases more than 10 times but thin-film can detect extremely low NO concentration (125ppb) after thermal treatment. The sensitivity is linear dependent on the NO concentration. Besides, the response time improved all under 30s with the concentration range from 1ppm to 125ppb. Most important of all, the sensors show excellent selectivity which means the sensitivity were all below 1.02 when exposed to CO, CO2, SO2 gases with 1ppm. The results point out that the ZnGa2O4 gas sensors after annealing exhibit the better NO sensing properties, shorter response time and outstanding selectivity.","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133936393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Teisseyre, I. Gorczyca, D. Jarosz, M. Wierzbowska, S. Kret, F. Donatini, D. L. S. Dang
{"title":"Cubic ZnMgO alloys for deep ultraviolet applications (Conference Presentation)","authors":"H. Teisseyre, I. Gorczyca, D. Jarosz, M. Wierzbowska, S. Kret, F. Donatini, D. L. S. Dang","doi":"10.1117/12.2516975","DOIUrl":"https://doi.org/10.1117/12.2516975","url":null,"abstract":"","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130003181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Lorke, P. Deák, Quoc Duy Ho, B. Aradi, T. Frauenheim
{"title":"Choosing the correct hybrid for defect calculations: A case study on intrinsic carrier trapping in gallium oxide (Conference Presentation)","authors":"M. Lorke, P. Deák, Quoc Duy Ho, B. Aradi, T. Frauenheim","doi":"10.1117/12.2515495","DOIUrl":"https://doi.org/10.1117/12.2515495","url":null,"abstract":"","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"128 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121708734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beta-Ga2O3: materials synthesis and device demonstration (Conference Presentation)","authors":"Hongping Zhao","doi":"10.1117/12.2515472","DOIUrl":"https://doi.org/10.1117/12.2515472","url":null,"abstract":"Ultrawide bandgap (UWBG) gallium oxide (Ga2O3) represents an emerging semiconductor material with excellent chemical and thermal stability. It has a band gap of 4.5-4.9 eV, much higher than that of the GaN (3.4 eV) and 4H-SiC (3.2 eV). The monoclinic beta-phase Ga2O3 represents the thermodynamically stable crystal among the known five phases . The breakdown field of beta-Ga2O3 is estimated to be 6-8 MV/cm, which is much larger than that of the 4H-SiC and GaN. These unique properties make beta-Ga2O3 a promising candidate for high power electronic device and solar blind photodetector applications. More advantageously, single crystal beta-Ga2O3 substrates can be synthesized by scalable and low cost melting based growth techniques. Different from the molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) growth techniques, we have developed a low pressure chemical vapor deposition (LPCVD) method to grow high quality beta-Ga2O3 thin films on both native Ga2O3 and c-sapphire substrates with controllable doping and fast growth rates up to 10 um/hr. In this talk, we present the growth, material characterization and device demonstration of beta-Ga2O3 thin films grown via LPCVD. The beta-Ga2O3 thin films were grown on native beta-Ga2O3 (010), (001) and (-201) substrates and sapphire substrates using high purity gallium and oxygen as the precursors, and argon (Ar) as the carrier gas. The growth temperature ranged between 850 ˚C and 950 ˚C. Fundamental material properties including temperature dependent Hall measurements and device demonstration based on vertical Schottky barrier diodes will be discussed.","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125575193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Garand T. Tyson, Sudip Gurung, Subhajit Bej, A. Anopchenko, Howard Lee
{"title":"Tuning the epsilon-near-zero region of ultra-thin Al-doped ZnO through atomic layer deposition (Conference Presentation)","authors":"Garand T. Tyson, Sudip Gurung, Subhajit Bej, A. Anopchenko, Howard Lee","doi":"10.1117/12.2508887","DOIUrl":"https://doi.org/10.1117/12.2508887","url":null,"abstract":"In this work, we report on the tunability of carrier concentration and epsilon-near-zero (ENZ) wavelength (i.e. the region where the real dielectric permittivity of a material approaches zero) in ultrathin (<100 nm) Al-doped ZnO (AZO) nano-layers fabricated through the atomic layer deposition (ALD) technique. ALD is a variation of chemical vapor deposition in which a substrate is exposed to only one self-limiting reactant at a time, allowing for ultra-smooth, conformal deposition and precise control over film-thickness at the nanometer scale. To create the AZO meta-films, fused silica substrates are exposed to alternating cycles of Diethylzinc (DEZ) and water vapor, with periodic dopant cycles of Trimethylaluminium (TMA). \u0000\u0000Optical and material properties of the meta-films are determined using spectroscopic ellipsometry. Using the Drude model and regression analysis with measured values, properties such as film thickness, ENZ wavelength, and complex refractive index are then determined. Furthermore, excitation of ENZ modes in the fabricated films has been demonstrated experimentally using the Kretschmann-Raether configuration. It was found that by varying the deposition temperature, Al:ZnO doping ratio, and film thickness, the ENZ wavelength of AZO thin films could be precisely tuned in the near infrared region from 1520 to 1700 nm. The results of this work allow for the precise engineering of optical properties of AZO films for zero-index photonic applications.","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127231442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coherent gamma-Al2O3/Ga2O3 superlattices grown on MgAl2O4 (Conference Presentation)","authors":"T. Oshima","doi":"10.1117/12.2515331","DOIUrl":"https://doi.org/10.1117/12.2515331","url":null,"abstract":"The rising momentum of research and developments on Ga2O3 has broaden the area of material exploration even for metastable phases. In the field of metastable Ga2O3, we have focused on defective-spinel-structured γ-phase and established some milestones: epitaxial stabilization of single crystalline films on MgAl2O4 [T. Oshima,et al., J. Cryst. Growth 359, 60 (2012).], carrier generation by impurity doping [T. Oshima et al., J. Cryst. Growth 421, 23 (2015).], and band-gap engineering by alloying γ-Al2O3 [T. Oshima et al., Appl. Phys. Express 10, 051104 (2017).]. We consider their results endorse further semiconductor engineering studies on γ-Ga2O3-related materials. Therefore, as a successive study, we have attempted to fabricate first γ-(AlxGa1−x)2O3-based heterostructures, particularly the superlattices (SLs) comprised with the end members of the alloy, to consider the possibility of obtaining coherent heterojunctions for future heterojunction device applications. 10-period γ-Al2O3/Ga2O3 SLs on (001) MgAl2O4 substrate were fabricated by plasma-assisted molecular beam epitaxy. By controlling the each layer thickness, we tuned the average Al composition (x_ave) of the coherent SLs from 0.26 to 0.86, and obtained nearly-lattice-matched SLs to the substrate at x_ave ~ 0.5. The lattice-matched SLs maintained coherent interfaces up to a period length of 7.2 nm (3.2/4.0 nm for γ-Al2O3/Ga2O3 layers) in spite of a large lattice mismatch between the end members (−3.6%). These successful fabrication of γ-Al2O3/Ga2O3 SLs means wide flexibility in designing γ-(AlxGa1−x)2O3-based heterostructures including superlattices for future development of functional heterojunction devices.","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127601367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Halide vapor phase epitaxy of a- and b-Ga2O3 films (Conference Presentation)","authors":"J. Leach","doi":"10.1117/12.2527567","DOIUrl":"https://doi.org/10.1117/12.2527567","url":null,"abstract":"Thanks to their superior breakdown fields, both beta- and alpha-phase Ga2O3 are poised to achieve ultra-high-performance devices enabling highly efficient, high voltage power switching systems. To realize the thick films required of the highest voltage devices, a growth technique which can achieve high growth rates is desired. Kyma Technologies has developed a low-cost halide vapor phase epitaxy (HVPE) tool for the growth of both beta- phase and alpha- phase Ga2O3 films which boasts high growth rates and smoothness while simultaneously being able to be lightly and controllably doped with Si and free of carbon. We will outline our recent growth results including effects of substrate preparation and growth conditions on epilayer morphology and mobility.","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131030736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}