{"title":"a-和b-Ga2O3薄膜的卤化物气相外延(会议报告)","authors":"J. Leach","doi":"10.1117/12.2527567","DOIUrl":null,"url":null,"abstract":"Thanks to their superior breakdown fields, both beta- and alpha-phase Ga2O3 are poised to achieve ultra-high-performance devices enabling highly efficient, high voltage power switching systems. To realize the thick films required of the highest voltage devices, a growth technique which can achieve high growth rates is desired. Kyma Technologies has developed a low-cost halide vapor phase epitaxy (HVPE) tool for the growth of both beta- phase and alpha- phase Ga2O3 films which boasts high growth rates and smoothness while simultaneously being able to be lightly and controllably doped with Si and free of carbon. We will outline our recent growth results including effects of substrate preparation and growth conditions on epilayer morphology and mobility.","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Halide vapor phase epitaxy of a- and b-Ga2O3 films (Conference Presentation)\",\"authors\":\"J. Leach\",\"doi\":\"10.1117/12.2527567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thanks to their superior breakdown fields, both beta- and alpha-phase Ga2O3 are poised to achieve ultra-high-performance devices enabling highly efficient, high voltage power switching systems. To realize the thick films required of the highest voltage devices, a growth technique which can achieve high growth rates is desired. Kyma Technologies has developed a low-cost halide vapor phase epitaxy (HVPE) tool for the growth of both beta- phase and alpha- phase Ga2O3 films which boasts high growth rates and smoothness while simultaneously being able to be lightly and controllably doped with Si and free of carbon. We will outline our recent growth results including effects of substrate preparation and growth conditions on epilayer morphology and mobility.\",\"PeriodicalId\":106257,\"journal\":{\"name\":\"Oxide-based Materials and Devices X\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxide-based Materials and Devices X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2527567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxide-based Materials and Devices X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2527567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Halide vapor phase epitaxy of a- and b-Ga2O3 films (Conference Presentation)
Thanks to their superior breakdown fields, both beta- and alpha-phase Ga2O3 are poised to achieve ultra-high-performance devices enabling highly efficient, high voltage power switching systems. To realize the thick films required of the highest voltage devices, a growth technique which can achieve high growth rates is desired. Kyma Technologies has developed a low-cost halide vapor phase epitaxy (HVPE) tool for the growth of both beta- phase and alpha- phase Ga2O3 films which boasts high growth rates and smoothness while simultaneously being able to be lightly and controllably doped with Si and free of carbon. We will outline our recent growth results including effects of substrate preparation and growth conditions on epilayer morphology and mobility.