Mathematics of Climate and Weather Forecasting最新文献

筛选
英文 中文
A Suite of Skeleton Models for the MJO with Refined Vertical Structure 一套具有精细垂直结构的MJO骨架模型
Mathematics of Climate and Weather Forecasting Pub Date : 2015-11-30 DOI: 10.1515/mcwf-2015-0004
S. Thual, A. Majda
{"title":"A Suite of Skeleton Models for the MJO with Refined Vertical Structure","authors":"S. Thual, A. Majda","doi":"10.1515/mcwf-2015-0004","DOIUrl":"https://doi.org/10.1515/mcwf-2015-0004","url":null,"abstract":"Abstract The Madden-Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on intraseasonal timescales and planetary spatial scales. The skeleton model is a minimal dynamical model that recovers robustly the most fundamental MJO features of (I) a slow eastward speed of roughly 5 ms−1, (II) a peculiar dispersion relation with dw/dk ≈ 0, and (III) a horizontal quadrupole vortex structure. This model depicts the MJO as a neutrally-stable atmosphericwave that involves a simple multiscale interaction between planetary dry dynamics, planetary lower-tropospheric moisture and the planetary envelope of synoptic-scale activity. Here we propose and analyze a suite of skeleton models that qualitatively reproduce the refined vertical structure of the MJO in nature. This vertical structure consists of a planetary envelope of convective activity transitioning from the congestus to the deep to the stratiform type, in addition to a front-to-rear (i.e. tilted) structure of heating, moisture, winds and temperature. A first example of skeleton model achieving this goal has been considered recently in work by the authors. The construction of such a model satisfies an energy conservation principle, such that its solutions at the intraseasonal-planetary scale remain neutrally stable. Here, additional classes of skeleton models are constructed based on the same principle. In particular, those new models are more realistic then the former one as they consider fully coupled interactions between the planetary dry dynamics of the first and second baroclinic mode and the details of the vertical structure of moisture and convective activity. All models reproduce qualitatively the refined vertical structure of the MJO. In addition,when considered with a simple stochastic parametrization for the unresolved details of synopticscale activity, all models show intermittent initiation, propagation and shut down of MJO wave trains, as in previous studies.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121040662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Multiscale asymptotics for the Skeleton of the Madden-Julian Oscillation and Tropical–Extratropical Interactions Madden-Julian振荡骨架和热带-温带相互作用的多尺度渐近性
Mathematics of Climate and Weather Forecasting Pub Date : 2015-10-03 DOI: 10.1515/mcwf-2015-0003
Shengqian Chen, A. Majda, S. Stechmann
{"title":"Multiscale asymptotics for the Skeleton of the Madden-Julian Oscillation and Tropical–Extratropical Interactions","authors":"Shengqian Chen, A. Majda, S. Stechmann","doi":"10.1515/mcwf-2015-0003","DOIUrl":"https://doi.org/10.1515/mcwf-2015-0003","url":null,"abstract":"Abstract Anew model is derived and analyzed for tropical–extratropical interactions involving the Madden– Julian oscillation (MJO). The model combines (i) the tropical dynamics of the MJO and equatorial baroclinic waves and (ii) the dynamics of barotropic Rossby waves with significant extratropical structure, and the combined system has a conserved energy. The method of multiscale asymptotics is applied to systematically derive a system of ordinary differential equations (ODEs) for three-wave resonant interactions. Two novel features are (i) a degenerate auxiliary problem with overdetermined equations due to a compatibility condition (meridional geostrophic balance) and (ii) cubic self-interaction terms that are not typically found in threewave resonance ODEs. Several examples illustrate applications to MJO initiation and termination, including cases of (i) the MJO, equatorial baroclinic Rossbywaves, and barotropic Rossbywaves interacting, and (ii) the MJO, baroclinic Kelvinwaves, and barotropic Rossbywaves interacting. Resonance with the Kelvinwave is not possible here if only dry variables are considered, but it occurs in the moist model here through interactions with water vapor and convective activity.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116814663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Predicting the Cloud Patterns for the Boreal Summer Intraseasonal Oscillation Through a Low-Order Stochastic Model 用低阶随机模式预测北方夏季季内振荡的云型
Mathematics of Climate and Weather Forecasting Pub Date : 2015-09-01 DOI: 10.1515/mcwf-2015-0001
N. Chen, A. Majda
{"title":"Predicting the Cloud Patterns for the Boreal Summer Intraseasonal Oscillation Through a Low-Order Stochastic Model","authors":"N. Chen, A. Majda","doi":"10.1515/mcwf-2015-0001","DOIUrl":"https://doi.org/10.1515/mcwf-2015-0001","url":null,"abstract":"Abstract We assess the predictability limits of the large-scale cloud patterns in the boreal summer intraseasonal variability (BSISO), which are measured by the infrared brightness temperature, a proxy for convective activity. A recent developed nonlinear data analysis technique, nonlinear Laplacian spectrum analysis (NLSA), is applied to the brightness temperature data, defining two spatial modes with high intermittency associated with the BSISO time series. Then a recent developed data-driven physics-constrained low-ordermodeling strategy is applied to these time series. The result is a four dimensional system with two observed BSISO variables and two hidden variables involving correlated multiplicative noise through the nonlinear energyconserving interaction. With the optimal parameters calibrated by information theory, the non-Gaussian fat tailed probability distribution functions (PDFs), the autocorrelations and the power spectrum of the model signals almost perfectly match those of the observed data. An ensemble prediction scheme incorporating an effective on-line data assimilation algorithm for determining the initial ensemble of the hidden variables shows the useful prediction skill in the non-El Niño years is at least 30 days and even reaches 55 days in those years with regular oscillations and the skillful prediction lasts for 18 days in the strong El Niño year (year 1998). Furthermore, the ensemble spread succeeds in indicating the forecast uncertainty. Although the reduced linear model with time-periodic stable-unstable damping is able to capture the non-Gaussian fat tailed PDFs, it is less skillful in forecasting the BSISO in the years with irregular oscillations. The failure of the ensemble spread to include the truth also indicates failure in quantification of the uncertainty. In addition, without the energy-conserving nonlinear interactions, the linear model is sensitive with parameter variations. mcwfnally, the twin experiment with nonlinear stochastic model has comparable skill as the observed data, suggesting the nonlinear stochastic model has significant skill for determining the predictability limits of the large-scale cloud patterns of the BSISO.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124989139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Numerical simulations of the humid atmosphere above a mountain 山上方湿润大气的数值模拟
Mathematics of Climate and Weather Forecasting Pub Date : 2015-01-31 DOI: 10.1515/mcwf-2015-0005
A. Bousquet, M. Chekroun, Youngjoon Hong, R. Temam, J. Tribbia
{"title":"Numerical simulations of the humid atmosphere above a mountain","authors":"A. Bousquet, M. Chekroun, Youngjoon Hong, R. Temam, J. Tribbia","doi":"10.1515/mcwf-2015-0005","DOIUrl":"https://doi.org/10.1515/mcwf-2015-0005","url":null,"abstract":"Abstract New avenues are explored for the numerical study of the two dimensional inviscid hydrostatic primitive equations of the atmosphere with humidity and saturation, in presence of topography and subject to physically plausible boundary conditions for the system of equations. Flows above a mountain are classically treated by the so-called method of terrain following coordinate system. We avoid this discretization method which induces errors in the discretization of tangential derivatives near the topography. Instead we implement a first order finite volume method for the spatial discretization using the initial coordinates x and p. A compatibility condition similar to that related to the condition of incompressibility for the Navier- Stokes equations, is introduced. In that respect, a version of the projection method is considered to enforce the compatibility condition on the horizontal velocity field, which comes from the boundary conditions. For the spatial discretization, a modified Godunov type method that exploits the discrete finite-volume derivatives by using the so-called Taylor Series Expansion Scheme (TSES), is then designed to solve the equations. We report on numerical experiments using realistic parameters. Finally, the effects of a random small-scale forcing on the velocity equation is numerically investigated.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127796335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Seasonal forecasting of tropical cyclone activity in the Australian and the South Pacific Ocean regions 澳洲及南太平洋地区热带气旋活动的季节性预报
Mathematics of Climate and Weather Forecasting Pub Date : 2015-01-29 DOI: 10.1515/mcwf-2015-0002
J. Wijnands, G. Qian, K. Shelton, R. Fawcett, J. Chan, Y. Kuleshov
{"title":"Seasonal forecasting of tropical cyclone activity in the Australian and the South Pacific Ocean regions","authors":"J. Wijnands, G. Qian, K. Shelton, R. Fawcett, J. Chan, Y. Kuleshov","doi":"10.1515/mcwf-2015-0002","DOIUrl":"https://doi.org/10.1515/mcwf-2015-0002","url":null,"abstract":"Abstract The Australian Bureau of Meteorology (Bureau) issues operational tropical cyclone (TC) seasonal forecasts for the Australian region (AR) and the South Pacific Ocean (SPO) and subregions therein. The forecasts are issued in October, ahead of the Southern Hemisphere TC season (November to April). Improvement of operational TC seasonal forecasts can lead to more accurate warnings for coastal communities to prepare for TC hazards. This study investigates the use of support vector regression (SVR) models, exploring new explanatory variables and non-linear relationships between them, the use of model averaging, and lastly the integration of forecast intervals based on a bias-corrected and accelerated non-parametric bootstrap. Hindcasting analyses show that the SVR model outperforms several benchmark methods. Analysis of the generated models shows that the Dipole Mode Index, 5VAR index and the Southern Oscillation Index are the most frequently selected as explanatory variables for TC seasonal forecasting in all regions. The usage of ENSOrelated covariates implies that definitions of regions and subregions may have to be updated to achieve optimal forecasting performance. Overall, the new SVR methodology is an improvement over the current linear discriminant analysis models and has the potential to increase accuracy of TC seasonal forecasts in the AR and SPO.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114559757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Research Article. On memory, dimension, and atmospheric teleconnections 研究文章。关于内存,尺寸和大气远程连接
Mathematics of Climate and Weather Forecasting Pub Date : 1900-01-01 DOI: 10.1515/mcwf-2017-0001
T. O’Kane, D. Monselesan, J. Risbey, I. Horenko, C. Franzke
{"title":"Research Article. On memory, dimension, and atmospheric teleconnections","authors":"T. O’Kane, D. Monselesan, J. Risbey, I. Horenko, C. Franzke","doi":"10.1515/mcwf-2017-0001","DOIUrl":"https://doi.org/10.1515/mcwf-2017-0001","url":null,"abstract":"Abstract Using reanalysed atmospheric data and applying a data-driven multiscale approximation to non-stationary dynamical processes, we undertake a systematic examination of the role of memory and dimensionality in defining the quasi-stationary states of the troposphere over the recent decades. We focus on the role of teleconnections characterised by either zonally-oriented wave trains or meridional dipolar structures. We consider the impact of various strategies for dimension reduction based on principal component analysis, diagonalization and truncation.We include the impact of memory by consideration of Bernoulli, Markovian and non-Markovian processes. We a priori explicitly separate barotropic and baroclinic processes and then implement a comprehensive sensitivity analysis to the number and type of retained modes. Our results show the importance of explicitly mitigating the deleterious impacts of signal degradation through ill-conditioning and under sampling in preference to simple strategies based on thresholds in terms of explained variance. In both hemispheres, the results obtained for the dominant tropospheric modes depend critically on the extent to which the higher order modes are retained, the number of free model parameters to be fitted, and whether memory effects are taken into account. Our study identifies the primary role of the circumglobal teleconnection pattern in both hemispheres for Bernoulli and Markov processes, and the transient nature and zonal structure of the Southern Hemisphere patterns in relation to their Northern Hemisphere counterparts. For both hemispheres, overfitted models yield structures consistent with the major teleconnection modes (NAO, PNA and SAM), which give way to zonally oriented wavetrains when either memory effects are ignored or where the dimension is reduced via diagonalising. Where baroclinic processes are emphasised, circumpolar wavetrains are manifest.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128041119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信