ColorantsPub Date : 2023-12-31DOI: 10.3390/colorants3010002
Olga Kirkilessi, C. Arapatzi, Heribert Reis, V. Kostourou, Kyriakos C. Prousis, T. Calogeropoulou
{"title":"A Study on the Structure, Optical Properties and Cellular Localization of Novel 1,3-Benzothiazole-Substituted BODIPYs","authors":"Olga Kirkilessi, C. Arapatzi, Heribert Reis, V. Kostourou, Kyriakos C. Prousis, T. Calogeropoulou","doi":"10.3390/colorants3010002","DOIUrl":"https://doi.org/10.3390/colorants3010002","url":null,"abstract":"A library of seven novel 1,3-benzothiazole-substituted BODIPY derivatives with tunable optical properties was synthesized. The new fluorescent dyes exhibited bathochromically shifted absorptions (up to 670 nm) and emissions centered in the red and near-infrared spectral region (up to 677 nm) in comparison to the parent compound 8-phenyl BODIPY (λabs: 499 nm, λemi: 508 nm). (TD)DFT calculations were performed to rationalize the spectroscopic properties of the new dyes. The cellular biodistribution of the new BODIPY dyes, their fluorescence stability and toxicity were investigated in both living and fixed fibroblasts using time-lapse fluorescent imaging and confocal microscopy. Six of the seven new dyes were photostable and non-toxic in vitro at 10 μM concentration. In addition, they efficiently stained the cell membrane, showing diffuse and dotty localization within the cell at low concentrations (1.0 and 0.1 μM). Specifically, dye TC498 was localized in vesicular structures in both live and fixed cells and could be used as a suitable marker in co-staining studies with other commonly used fluorescent probes.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"68 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139132457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of High Near-Infrared Reflective Black Pigment Based on YMn2O5","authors":"Kazuki Yamaguchi, Satoru Mochizuki, Yudai Nagato, Takuro Morimoto, Toshiyuki Masui","doi":"10.3390/colorants2040036","DOIUrl":"https://doi.org/10.3390/colorants2040036","url":null,"abstract":"Y(Mn0.95M0.05)2O5 (M = Al, Fe, Ga, Ti, and Zr) samples were synthesized via a sol–gel method using citric acid to find a new near-infrared (NIR) reflective black pigment. Among these samples, the optical reflectance of Y(Mn0.95Fe0.05)2O5 and Y(Mn0.95Ga0.05)2O5 in the near-infrared region was found to be larger than that of YMn2O5. Then, the concentration of the dopant (Fe or Ga) was changed between 0 and 15%, and the resulting UV–Vis–NIR reflectance spectra were measured. As a result, the optical reflectance of the Fe-doped samples decreased in the near-infrared region, while that of the Ga-doped samples increased. Accordingly, Y(Mn1−xGax)2O5 (0 ≤ x ≤ 0.20) samples were synthesized, and the crystal structure, particle size, optical properties, and color of the samples were characterized. The single-phase samples were obtained in the composition range of 0 ≤ x ≤ 0.15, and the lattice volume decreased with increasing Ga3+ concentration. Optical absorption below 850 nm was attributed to the charge transfer transition between O2p and Mn3d orbitals, and the absorption wavelength of Y(Mn1−xGax)2O5 shifted to the shorter wavelength side as the Ga3+ content increased, because of the decrease in the Mn3+ concentration. Although the sample color became slightly reddish black by the Ga3+ doping, the solar reflectance in the near-infrared region reached 47.6% at the composition of Y(Mn0.85Ga0.15)2O5. Furthermore, this NIR reflectance value was higher than those of the commercially available products (R < 45%).","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"68 40","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138594824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2023-11-13DOI: 10.3390/colorants2040035
Jose Manuel Barrera-Andrade, Natali de la Fuente-Maldonado, Ricardo Lopez-Medina, Ana Marisela Maubert-Franco, Elizabeth Rojas-Garcia
{"title":"Revolutionizing Wastewater Treatment: Harnessing Metal–Organic Frameworks for Exceptional Photocatalytic Degradation of Azo-Type Dyes","authors":"Jose Manuel Barrera-Andrade, Natali de la Fuente-Maldonado, Ricardo Lopez-Medina, Ana Marisela Maubert-Franco, Elizabeth Rojas-Garcia","doi":"10.3390/colorants2040035","DOIUrl":"https://doi.org/10.3390/colorants2040035","url":null,"abstract":"Due to the high stability of azo-type dyes, conventional treatment processes such as adsorption, flocculation, and activated sludge are not efficient for decolorizing wastewater effluents. An alternative to traditional wastewater treatment is photocatalysis, which has gained significant interest because research has shown it to be a viable and cost-effective process that uses sunlight as an inexhaustible energy source. In heterogeneous photocatalysis, a photocatalyst is required, such as TiO2, ZnO, composite materials, and, more recently, metal–organic frameworks (MOFs). MOFs, also known as “coordination polymers”, exhibit photocatalytic properties and have been proven to be promising materials in the photocatalytic degradation of dyes. This study presents recent advances in using MOFs as photocatalysts to degrade recalcitrant contaminants like azo-type dyes. Recent advancements in developing photocatalysts based on MOFs are focused on two strategies. Firstly, the development of new MOFs composed of complex ligands or a mixed ligand system, and secondly, the synthesis of composite materials based on MOFs and metal oxides, metals, sulfides, nitrides, etc. Both strategies have significantly contributed to the search for new semiconductors to degrade some recalcitrate contaminants in wastewater.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136351786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2023-11-06DOI: 10.3390/colorants2040034
Safalmani Pradhan, Yuki Kurokawa, Suraya Shaban, Shyam S. Pandey
{"title":"Squaric Acid Core Substituted Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Effect of Electron Acceptors on Their Photovoltaic Performance","authors":"Safalmani Pradhan, Yuki Kurokawa, Suraya Shaban, Shyam S. Pandey","doi":"10.3390/colorants2040034","DOIUrl":"https://doi.org/10.3390/colorants2040034","url":null,"abstract":"The design and development of sensitizing dyes possessing wide-wavelength photon harvesting encompassing visible to near-infrared (NIR) wavelength regions are unavoidable for increasing the overall efficiency of dye-sensitized solar cells (DSSCs). In this study, three far-red-sensitive squaraine sensitizers were designed computationally, synthesized, and characterized, aiming towards their suitability as a potential sensitizer for DSSCs. It has been found that the incorporation of an electron acceptor moiety in the central squaraine core brought about a red shift in the absorption maximum (λmax) and the emergence of a secondary absorption band in the blue region, thus broadening the photon-harvesting window. In addition, it also lowered the dye’s HOMO energy level enabling a facile regeneration of the photo-excited dye, which improved the photovoltaic performance of SQ-223, exhibiting a photoconversion efficiency (PCE) of 4.67%. Thereafter, to address the issue of wide-wavelength photon harvesting, DSSCs were fabricated by co-adsorbing two complementary dyes SQ-223 and D-131 in various molar ratios. The DSSC fabricated with D-131 and SQ-223 in 9:1 molar ratio displayed the best photovoltaic performance with a PCE of 5.81%, a significantly higher PCE when compared to corresponding individual dye-based DSSCs containing D-131 (3.94%) and SQ-223 (4.67%).","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"15 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135589281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2023-10-29DOI: 10.3390/colorants2040033
Abigail Trujillo-Vazquez, Fereshteh Abedini, Alina Pranovich, Carinna Parraman, Susanne Klein
{"title":"Printing with tonalli: Reproducing Featherwork from Precolonial Mexico Using Structural Colorants","authors":"Abigail Trujillo-Vazquez, Fereshteh Abedini, Alina Pranovich, Carinna Parraman, Susanne Klein","doi":"10.3390/colorants2040033","DOIUrl":"https://doi.org/10.3390/colorants2040033","url":null,"abstract":"Two of the most significant cases of extant 16th-century featherwork from Mexico are the so-called Moctezuma’s headdress and the Ahuizotl shield. While the feathers used in these artworks exhibit lightfast colors, their assembly comprises mainly organic materials, which makes them extremely fragile. Printed media, including books, catalogs, educational materials, and fine copies, offer an accessible means for audiences to document and disseminate visual aspects of delicate cultural artifacts without risking their integrity. Nevertheless, the singular brightness and iridescent colors of feathers are difficult to communicate to the viewer in printed reproductions when traditional pigments are used. This research explores the use of effect pigments (multilayered reflective structures) and improved halftoning techniques for additive printing, with the objective of enhancing the reproduction of featherwork by capturing its changing color and improving texture representation via a screen printing process. The reproduced images of featherwork exhibit significant perceptual resemblances to the originals, primarily owing to the shared presence of structural coloration. We applied structure-aware halftoning to better represent the textural qualities of feathers without compromising the performance of effect pigments in the screen printing method. Our prints show angle-dependent color, although their gamut is reduced. The novelty of this work lies in the refinement of techniques for printing full-color images by additive printing, which can enhance the 2D representation of the appearance of culturally significant artifacts.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"59 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136135233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2023-10-10DOI: 10.3390/colorants2040032
Leonardo Ricardo Bernardes da Conceição, Higor Oliveira da Cunha, Arcano Matheus Bragança Leite, Rajendran Suresh Babu, Sebastian Raja, Caue Ribeiro, Ana Lucia Ferreira de Barros
{"title":"Evaluation of Solar Conversion Efficiency in Dye-sensitized Solar Cells Using Natural Dyes Extracted from Alpinia purpurata and Alstroemeria Flower Petals as Novel Photosensitizers","authors":"Leonardo Ricardo Bernardes da Conceição, Higor Oliveira da Cunha, Arcano Matheus Bragança Leite, Rajendran Suresh Babu, Sebastian Raja, Caue Ribeiro, Ana Lucia Ferreira de Barros","doi":"10.3390/colorants2040032","DOIUrl":"https://doi.org/10.3390/colorants2040032","url":null,"abstract":"Herein, we evaluate the conversion efficiency of dye-sensitized solar cells (DSSCs) photosensitized using two different natural dyes extracted from Alpinia purpurata and Alstroemeria flower petals. The appreciable absorption capacity of the extracts in the visible light region was examined through absorption spectroscopy. The functional groups of the corresponding pigments were identified through Fourier transform spectroscopy (FTIR) technique thus indicating the presence of cyanidin 3-glycosides and piperine in the flowers of Alstroemeria and Alpinia purpurata. The extracted dyes were immobilized on TiO2 on transparent conducting FTO glass, which were used as photoanode. The dye-coated TiO2 photoanode, pt photocathode and iodide/triiodide redox electrolyte assembled into a cell module was illuminated by a light source intensity 100 mW/cm2 to measure the photovoltaic conversion efficiency of DSSCs. The TiO2 anode and Pt counter electrode surface roughness and morphological studies were evaluated using atomic force microscope (AFM) and field emission scanning electron microscopy (FESEM), respectively. Through the photoelectric characterizations, it was promising to verify that the solar conversion efficiency was calculated with the photovoltaic cell sensitized by Alstroemeria and Alpinia purpurata. This was achieved with a yield (η) of 1.74% and 0.65%, with an open-circuit voltage (Voc) of 0.39 and 0.53 V, short-circuit current density (Jsc) of 2.04 and 0.49 mA/cm2, fill factor (FF) of 0.35 and 0.40, and Pmax of 0.280 and 0.100 mW/cm2, respectively. The results are promising and demonstrate the importance of the search for new natural dyes to be used in organic solar cells for the development of devices that generate electricity in a sustainable way.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136358382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2023-09-30DOI: 10.3390/colorants2040031
Leonel C. Silva, Vanessa Otero, Maria J. Melo, Eurico J. Cabrita, Luís Mafra
{"title":"What’s the Madder? Characterization of Old Fashioned Alizarin/Aluminum Red Pigments Using Liquid and Solid-State NMR","authors":"Leonel C. Silva, Vanessa Otero, Maria J. Melo, Eurico J. Cabrita, Luís Mafra","doi":"10.3390/colorants2040031","DOIUrl":"https://doi.org/10.3390/colorants2040031","url":null,"abstract":"This work provides significant insight into the molecular structure of alizarin lake pigments used by artists in the past. To characterize two red powders, lakes 1 and 2, obtained by complexation of 1,2-dihydroxy anthraquinone (alizarin) with Al3+, a multi-analytical approach was designed based on solid and liquid state Nuclear Magnetic Resonance Spectroscopy (NMR), Fourier-Transform Infrared Spectroscopy (FTIR), Mass Spectrometry (MS) and Density Functional Theory (DFT) calculations. Lake 1 was synthesized according to literature and compared with lake 2, a reproduction of an artist’s pigment. FTIR showed Al3+ coordinated to oxygens in C1 and C9, and that in lake 2 the -OH groups in C2 are protonated, being responsible for its low solubility. 1H-NMR proved that lake 2 is formed by two tautomers [Al(Aliz-2-H-)2(OH)(H2O)] and [Al(Aliz-10-H-)2(OH)(H2O)], the latter being the major species. SS-NMR was the only technique that got insight into the Al3+ coordination, octahedral for both lakes. It confirmed the existence of two species in lake 2, in a 5:1 ratio. Both are amorphous “open structures”, resulting in fewer constraints for the ligands and in a large variety of geometries. SS-NMR allowed the analysis of the red pigments without preparation, which is a unique advantage for their study in artworks.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136343826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2023-09-29DOI: 10.3390/colorants2040030
Almudena Martí, Pau Arroyo, Pablo Gaviña, Salvador Gil, Margarita Parra, José A. Sáez
{"title":"Gold Nanoparticles as Monoanion Sensors through Modified Electrophilicity","authors":"Almudena Martí, Pau Arroyo, Pablo Gaviña, Salvador Gil, Margarita Parra, José A. Sáez","doi":"10.3390/colorants2040030","DOIUrl":"https://doi.org/10.3390/colorants2040030","url":null,"abstract":"Derived from malachite green, new triaryl-carbonium-ion-functionalized gold nanoparticles have been synthesized for detecting anions. The detection process, and concomitant colour change, is based on charge compensation on the surface of nanoparticles, which triggers their aggregation, resulting in a bathochromic shift of the plasmon resonance band. The difference in electrophilicity of the malachite green triaryl ions in solution or on gold nanoparticles makes it possible to distinguish different anions related to their nucleophilic character.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135195393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2023-09-13DOI: 10.3390/colorants2030029
Luca M. Sihn, Erick L. Bastos, Marcelo Nakamura, Mayara K. Uchiyama, Henrique E. Toma
{"title":"Repurposing the Strontium Ranelate Antiosteoporotic Drug as a New Outstanding Biocompatible Blue Dye","authors":"Luca M. Sihn, Erick L. Bastos, Marcelo Nakamura, Mayara K. Uchiyama, Henrique E. Toma","doi":"10.3390/colorants2030029","DOIUrl":"https://doi.org/10.3390/colorants2030029","url":null,"abstract":"Blue dyes are relatively uncommon in nature, and a novel dithiophene dye (RanB) is reported in this paper. This dye is derived from an old anti-osteoporotic drug and is a metal ion complexing agent, displaying a planar molecular structure, with two sets of carboxylate, isonitrile, thiophene, and iminodiacetate groups. The blue color originates from a strong absorption peak at 648 nm, accompanied by an unusual fluorescence at 555 nm, with higher energy compared to the main absorption band. RanB forms complexes with lanthanoid ions through the iminodiacetate groups and serves as an effective sensitizer for Tb3+ ions, heightening their emission and improving their use as luminescent agents. Its photo-physical properties and the interaction with Tb3+ have been investigated using absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy, along with computational methods (ZINDO/S and DFT). The RanB toxicity in human umbilical vein endothelial cells has also been tested, showing a lack of toxicity, holding promising prospects for application as a luminescent and coloring agent in pharmaceuticals and food.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135739741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2023-09-06DOI: 10.3390/colorants2030028
Daiane Amaral de Ramos Nogueira, T. Zanela, M. V. Machado, Carlos Alberto Policiano Almeida, Rafael Marangoni
{"title":"Adsorption Process of Methyl Orange Dye onto Zinc Hydroxide Nitrate: Kinetic and Thermodynamic Studies","authors":"Daiane Amaral de Ramos Nogueira, T. Zanela, M. V. Machado, Carlos Alberto Policiano Almeida, Rafael Marangoni","doi":"10.3390/colorants2030028","DOIUrl":"https://doi.org/10.3390/colorants2030028","url":null,"abstract":"Zinc hydroxide nitrate (ZHN) was used as an anionic adsorbent for the removal of methyl orange (MO) dye from aqueous solutions. ZHN was characterized via X-ray diffraction (XRD) and infrared spectroscopy (FTIR) techniques. Investigations were carried out to see how the adsorption of MO was affected by factors such as initial MO concentration, contact time and temperature. Adsorption isotherms were analyzed using the Langmuir and Freundlich equations, with the first one being the better result for the equilibrium data. Adsorption kinetics was studied through applying pseudo-first and pseudo-second-order kinetic models, and the experimental data were better fitted to the pseudo-second-order model. The activation energy was determined using the Arrhenius equation to be 105.45 kJ mol−1, revealing the chemical nature of the adsorption process. The thermodynamic parameters were also determined, showing the adsorption of MO onto ZHN to be a non-spontaneous and exothermic process. The experimental results showed ZHN as a potential adsorbent with adsorption capacity for removing anionic dyes from water medium.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"236 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80367698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}