Leonel C. Silva, Vanessa Otero, Maria J. Melo, Eurico J. Cabrita, Luís Mafra
{"title":"疯子是什么?传统茜素/铝红颜料的液相和固态核磁共振表征","authors":"Leonel C. Silva, Vanessa Otero, Maria J. Melo, Eurico J. Cabrita, Luís Mafra","doi":"10.3390/colorants2040031","DOIUrl":null,"url":null,"abstract":"This work provides significant insight into the molecular structure of alizarin lake pigments used by artists in the past. To characterize two red powders, lakes 1 and 2, obtained by complexation of 1,2-dihydroxy anthraquinone (alizarin) with Al3+, a multi-analytical approach was designed based on solid and liquid state Nuclear Magnetic Resonance Spectroscopy (NMR), Fourier-Transform Infrared Spectroscopy (FTIR), Mass Spectrometry (MS) and Density Functional Theory (DFT) calculations. Lake 1 was synthesized according to literature and compared with lake 2, a reproduction of an artist’s pigment. FTIR showed Al3+ coordinated to oxygens in C1 and C9, and that in lake 2 the -OH groups in C2 are protonated, being responsible for its low solubility. 1H-NMR proved that lake 2 is formed by two tautomers [Al(Aliz-2-H-)2(OH)(H2O)] and [Al(Aliz-10-H-)2(OH)(H2O)], the latter being the major species. SS-NMR was the only technique that got insight into the Al3+ coordination, octahedral for both lakes. It confirmed the existence of two species in lake 2, in a 5:1 ratio. Both are amorphous “open structures”, resulting in fewer constraints for the ligands and in a large variety of geometries. SS-NMR allowed the analysis of the red pigments without preparation, which is a unique advantage for their study in artworks.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What’s the Madder? Characterization of Old Fashioned Alizarin/Aluminum Red Pigments Using Liquid and Solid-State NMR\",\"authors\":\"Leonel C. Silva, Vanessa Otero, Maria J. Melo, Eurico J. Cabrita, Luís Mafra\",\"doi\":\"10.3390/colorants2040031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work provides significant insight into the molecular structure of alizarin lake pigments used by artists in the past. To characterize two red powders, lakes 1 and 2, obtained by complexation of 1,2-dihydroxy anthraquinone (alizarin) with Al3+, a multi-analytical approach was designed based on solid and liquid state Nuclear Magnetic Resonance Spectroscopy (NMR), Fourier-Transform Infrared Spectroscopy (FTIR), Mass Spectrometry (MS) and Density Functional Theory (DFT) calculations. Lake 1 was synthesized according to literature and compared with lake 2, a reproduction of an artist’s pigment. FTIR showed Al3+ coordinated to oxygens in C1 and C9, and that in lake 2 the -OH groups in C2 are protonated, being responsible for its low solubility. 1H-NMR proved that lake 2 is formed by two tautomers [Al(Aliz-2-H-)2(OH)(H2O)] and [Al(Aliz-10-H-)2(OH)(H2O)], the latter being the major species. SS-NMR was the only technique that got insight into the Al3+ coordination, octahedral for both lakes. It confirmed the existence of two species in lake 2, in a 5:1 ratio. Both are amorphous “open structures”, resulting in fewer constraints for the ligands and in a large variety of geometries. SS-NMR allowed the analysis of the red pigments without preparation, which is a unique advantage for their study in artworks.\",\"PeriodicalId\":10539,\"journal\":{\"name\":\"Colorants\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colorants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/colorants2040031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colorants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colorants2040031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
What’s the Madder? Characterization of Old Fashioned Alizarin/Aluminum Red Pigments Using Liquid and Solid-State NMR
This work provides significant insight into the molecular structure of alizarin lake pigments used by artists in the past. To characterize two red powders, lakes 1 and 2, obtained by complexation of 1,2-dihydroxy anthraquinone (alizarin) with Al3+, a multi-analytical approach was designed based on solid and liquid state Nuclear Magnetic Resonance Spectroscopy (NMR), Fourier-Transform Infrared Spectroscopy (FTIR), Mass Spectrometry (MS) and Density Functional Theory (DFT) calculations. Lake 1 was synthesized according to literature and compared with lake 2, a reproduction of an artist’s pigment. FTIR showed Al3+ coordinated to oxygens in C1 and C9, and that in lake 2 the -OH groups in C2 are protonated, being responsible for its low solubility. 1H-NMR proved that lake 2 is formed by two tautomers [Al(Aliz-2-H-)2(OH)(H2O)] and [Al(Aliz-10-H-)2(OH)(H2O)], the latter being the major species. SS-NMR was the only technique that got insight into the Al3+ coordination, octahedral for both lakes. It confirmed the existence of two species in lake 2, in a 5:1 ratio. Both are amorphous “open structures”, resulting in fewer constraints for the ligands and in a large variety of geometries. SS-NMR allowed the analysis of the red pigments without preparation, which is a unique advantage for their study in artworks.