Colloids and Interfaces最新文献

筛选
英文 中文
Impact of Hydrophobic and Electrostatic Forces on the Adsorption of Acacia Gum on Oxide Surfaces Revealed by QCM-D QCM-D揭示疏水力和静电力对Acacia胶在氧化物表面吸附的影响
IF 2.4
Colloids and Interfaces Pub Date : 2023-03-30 DOI: 10.3390/colloids7020026
A. Davantès, M. Nigen, Christian Sanchez, D. Renard
{"title":"Impact of Hydrophobic and Electrostatic Forces on the Adsorption of Acacia Gum on Oxide Surfaces Revealed by QCM-D","authors":"A. Davantès, M. Nigen, Christian Sanchez, D. Renard","doi":"10.3390/colloids7020026","DOIUrl":"https://doi.org/10.3390/colloids7020026","url":null,"abstract":"The adsorption of Acacia gum from two plant exudates, A. senegal and A. seyal, at the solid-liquid interface on oxide surfaces was studied using a quartz crystal microbalance with dissipation monitoring (QCM-D). The impact of the hydrophobic and electrostatic forces on the adsorption capacity was investigated by different surface, hydrophobicity, and charge properties, and by varying the ionic strength or the pH. The results highlight that hydrophobic forces have higher impacts than electrostatic forces on the Acacia gum adsorption on the oxide surface. The Acacia gum adsorption capacity is higher on hydrophobic surfaces compared to hydrophilic ones and presents a higher stability with negatively charged surfaces. The structural configuration and charge of Acacia gum in the first part of the adsorption process are important parameters. Acacia gum displays an extraordinary ability to adapt to surface properties through rearrangements, conformational changes, and/or dehydration processes in order to reach the steadiest state on the solid surface. Rheological analysis from QCM-D data shows that the A. senegal layers present a viscous behavior on the hydrophilic surface and a viscoelastic behavior on more hydrophobic ones. On the contrary, A. seyal layers show elastic behavior on all surfaces according to the Voigt model or a viscous behavior on the hydrophobic surface when considering the power-law model.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43851103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Release of Encapsulated Bioactive Compounds from Active Packaging/Coating Materials and Its Modeling: A Systematic Review 活性包装/涂层材料中包封生物活性化合物的释放及其建模:系统综述
IF 2.4
Colloids and Interfaces Pub Date : 2023-03-23 DOI: 10.3390/colloids7020025
S. Siddiqui, Shubhra Singh, N. A. Bahmid, Taha Mehany, D. Shyu, E. Assadpour, Narjes Malekjani, Roberto Castro‐Muñoz, S. Jafari
{"title":"Release of Encapsulated Bioactive Compounds from Active Packaging/Coating Materials and Its Modeling: A Systematic Review","authors":"S. Siddiqui, Shubhra Singh, N. A. Bahmid, Taha Mehany, D. Shyu, E. Assadpour, Narjes Malekjani, Roberto Castro‐Muñoz, S. Jafari","doi":"10.3390/colloids7020025","DOIUrl":"https://doi.org/10.3390/colloids7020025","url":null,"abstract":"The issue of achieving controlled or targeted release of bioactive compounds with specific functional properties is a complex task that requires addressing several factors, including the type of bioactive, the nature of the delivery system, and the environmental conditions during transportation and storage. This paper deals with extensive reporting for the identification of original articles using Scopus and Google Scholar based on active packaging as a novel packaging technology that controls the release of antimicrobial agents encapsulated into carriers in the food packaging systems. For evidence-based search, the studies were extracted from 2015 to 2020 and screened using the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Following the review and screening of publications, 32 peer-reviewed articles were subjected to systematic analysis. The preliminary search indicated that the encapsulation of bioactives enhances their bioavailability and stability. From a theoretical viewpoint, mathematical models play an important role in understanding and predicting the release behavior of bioactives during transportation and storage, thus facilitating the development of new packaging material by a systematic approach. However, only a few studies could formulate parameters for mathematical models in order to achieve the specific release mechanism regulated for the quality and safety of foods. Therefore, this paper will cover all encapsulation approaches, active packaging, and mathematical modeling in the food industry into structural form and analyze the challenges faced by the complex nature of active packaging in real food systems.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45765478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Simulation and Experimental Analysis of Microalgae and Membrane Surface Interaction 微藻与膜表面相互作用的模拟与实验分析
IF 2.4
Colloids and Interfaces Pub Date : 2023-03-20 DOI: 10.3390/colloids7010024
N. Khosravizadeh, Duowei Lu, Yichen Liao, B. Liao, P. Fatehi
{"title":"Simulation and Experimental Analysis of Microalgae and Membrane Surface Interaction","authors":"N. Khosravizadeh, Duowei Lu, Yichen Liao, B. Liao, P. Fatehi","doi":"10.3390/colloids7010024","DOIUrl":"https://doi.org/10.3390/colloids7010024","url":null,"abstract":"The microalgae-induced membrane system applied in wastewater treatment has attracted attention due to microalgae’s outstanding nutrient fixation capacity and biomass harvesting. However, the fundamental understanding of the interaction of microalgae and membrane surfaces is still limited. This study presents experimental and numerical methods to analyze the attachment of microalgae to the membrane. An atomic force microscope (AFM) analysis confirmed that a polydimethylsiloxane (PDMS) sensor, as a simulated membrane surface, exhibited a rougher surface morphology than a polyurethane (PU) sensor did. The contact angle and adsorption analysis using a quartz crystal microbalance confirmed that the PDMS surface, representing the membrane surface, provided a better attachment affinity than the PU surface for microalgae because of the lower surface tension and stronger hydrophobicity of PDMS. The simulation studies of this work involved the construction of roughly circular-shaped particles to represent microalgae, rough flat surfaces to represent membrane surfaces, and the interaction energy between particles and surfaces based on XDLVO theory. The modeling results of the microalgae adsorption trend are consistent and verified with the experimental results. It was observed that the interfacial energy increased with increasing the size of particles and asperity width of the membrane surface. Contrarily, the predicted interaction energy dropped with elevating the number of asperities and asperity height of the microalgae and membrane. The most influential parameter for controlling interfacial interaction between the simulated microalgae and membrane surface was the asperity height of the membrane; changing the height from 50 nm to 250 nm led to alteration in the primary minimum from −18 kT to −3 kT. Overall, this study predicted that the microalgae attachment depends on the size of the asperities to a great extent and on the number of asperities to a lesser extent. These results provide an insight into the interaction of microalgae and membrane surface, which would provide information on how the performance of microalgae-based membrane systems can be improved.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46764669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nose-to-Brain Targeting via Nanoemulsion: Significance and Evidence 纳米乳液鼻脑靶向:意义和证据
IF 2.4
Colloids and Interfaces Pub Date : 2023-03-17 DOI: 10.3390/colloids7010023
S. Misra, K. Pathak
{"title":"Nose-to-Brain Targeting via Nanoemulsion: Significance and Evidence","authors":"S. Misra, K. Pathak","doi":"10.3390/colloids7010023","DOIUrl":"https://doi.org/10.3390/colloids7010023","url":null,"abstract":"Background: Non-invasive and patient-friendly nose-to-brain pathway is the best-suited route for brain delivery of therapeutics as it bypasses the blood–brain barrier. The intranasal pathway (olfactory and trigeminal nerves) allows the entry of various bioactive agents, delivers a wide array of hydrophilic and hydrophobic drugs, and circumvents the hepatic first-pass effect, thus targeting neurological diseases in both humans and animals. The olfactory and trigeminal nerves make a bridge between the highly vascularised nasal cavity and brain tissues for the permeation and distribution, thus presenting a direct pathway for the entry of therapeutics into the brain. Materials: This review portrays insight into recent research reports (spanning the last five years) on the nanoemulsions developed for nose-to-brain delivery of actives for the management of a myriad of neurological disorders, namely, Parkinson’s disease, Alzheimer’s, epilepsy, depression, schizophrenia, cerebral ischemia and brain tumours. The information and data are collected and compiled from more than one hundred Scopus- and PubMed-indexed articles. Conclusions: The olfactory and trigeminal pathways facilitate better biodistribution and bypass BBB issues and, thus, pose as a possible alternative route for the delivery of hydrophobic, poor absorption and enzyme degradative therapeutics. Exploring these virtues, intranasal nanoemulsions have proven to be active, non-invasiveand safe brain-targeting cargos for the alleviation of the brain and other neurodegenerative disorders.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42457118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Influence of the Triglyceride Composition, Surfactant Concentration and Time–Temperature Conditions on the Particle Morphology in Dispersions 甘油三酯组成、表面活性剂浓度和时间-温度条件对分散体中颗粒形态的影响
IF 2.4
Colloids and Interfaces Pub Date : 2023-03-17 DOI: 10.3390/colloids7010022
J. Reiner, Désirée Martin, Franziska Ott, L. Harnisch, V. Gaukel, H. Karbstein
{"title":"Influence of the Triglyceride Composition, Surfactant Concentration and Time–Temperature Conditions on the Particle Morphology in Dispersions","authors":"J. Reiner, Désirée Martin, Franziska Ott, L. Harnisch, V. Gaukel, H. Karbstein","doi":"10.3390/colloids7010022","DOIUrl":"https://doi.org/10.3390/colloids7010022","url":null,"abstract":"Many applications for crystalline triglyceride-in-water dispersions exist in the life sciences and pharmaceutical industries. The main dispersion structures influencing product properties are the particle morphology and size distribution. These can be set by the formulation and process parameters, but temperature fluctuations may alter them afterwards. As the dispersed phase often consists of complex fats, there are many formulation variables influencing these product properties. In this study, we aimed to gain a better understanding of the influence of the dispersed-phase composition on the crystallization and melting behavior of these systems. We found that different particle morphologies can be obtained by varying the dispersed-phase composition. Droplets smaller than 1 µm were obtained after melting due to self-emulsification (SE), but these changes and coalescence events were only partly influenced by the melting range of the fat. With increasing surfactant concentration, the SE tendency increased. The smallest x50,3 of 3 µm was obtained with a surfactant concentration of 0.5 wt%. We attributed this to different mechanisms leading to the droplets’ breakup during melting, which we observed via thermo-optical microscopy. In addition, SE and coalescence are a function of the cooling and heating profiles. With slow heating (0.5 K/min), both phenomena are more pronounced, as the particles have more time to undergo the required mechanisms.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44433305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Impact of Operating Parameters on the Production of Nanoemulsions Using a High-Pressure Homogenizer with Flow Pattern and Back Pressure Control 操作参数对使用具有流型和背压控制的高压均质器生产纳米乳液的影响
IF 2.4
Colloids and Interfaces Pub Date : 2023-03-16 DOI: 10.3390/colloids7010021
Hualu Zhou, Dingkui Qin, Giang Vu, D. Mcclements
{"title":"Impact of Operating Parameters on the Production of Nanoemulsions Using a High-Pressure Homogenizer with Flow Pattern and Back Pressure Control","authors":"Hualu Zhou, Dingkui Qin, Giang Vu, D. Mcclements","doi":"10.3390/colloids7010021","DOIUrl":"https://doi.org/10.3390/colloids7010021","url":null,"abstract":"The main objective of this study was to establish the relative importance of the main operating parameters impacting the formation of food-grade oil-in-water nanoemulsions by high-pressure homogenization. The goal of this unit operation was to create uniform and stable emulsified products with small mean particle diameters and narrow polydispersity indices. In this study, we examined the performance of a new commercial high-pressure valve homogenizer, which has several features that provide good control over the particle size distribution of nanoemulsions, including variable homogenization pressures (up to 45,000 psi), nozzle dimensions (0.13/0.22 mm), flow patterns (parallel/reverse), and back pressures. The impact of homogenization pressure, number of passes, flow pattern, nozzle dimensions, back pressure, oil concentration, emulsifier concentration, and emulsifier type on the particle size distribution of corn oil-in-water emulsions was systematically examined. The droplet size decreased with increasing homogenization pressure, number of passes, back pressure, and emulsifier-to-oil ratio. Moreover, it was slightly smaller when a reverse rather than parallel flow profile was used. The emulsifying performance of plant, animal, and synthetic emulsifiers was compared because there is increasing interest in replacing animal and synthetic emulsifiers with plant-based ones in the food industry. Under fixed homogenization conditions, the mean particle diameter decreased in the following order: gum arabic (0.66 µm) > soy protein (0.18 µm) > whey protein (0.14 µm) ≈ Tween 20 (0.14 µm). The information reported in this study is useful for the optimization of the production of food-grade nanoemulsions using high-pressure homogenization.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44154657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Preparation of V2O5 Thin Film by Sol–Gel Technique and Pen Plotter Printing 溶胶-凝胶法制备V2O5薄膜及笔式绘图机印刷
IF 2.4
Colloids and Interfaces Pub Date : 2023-03-15 DOI: 10.3390/colloids7010020
Philipp Yu. Gorobtsov, T. Simonenko, N. Simonenko, E. Simonenko, N. Kuznetsov
{"title":"Preparation of V2O5 Thin Film by Sol–Gel Technique and Pen Plotter Printing","authors":"Philipp Yu. Gorobtsov, T. Simonenko, N. Simonenko, E. Simonenko, N. Kuznetsov","doi":"10.3390/colloids7010020","DOIUrl":"https://doi.org/10.3390/colloids7010020","url":null,"abstract":"The work is dedicated to study of thin V2O5 film formation by pen plotter printing using vanadyl alkoxyacetylacetonate as hydrolytically active precursor. Solution of the prepared vanadyl butoxyacetylacetonate complex with 87% of butoxyl groups was used as functional ink for pen plotter printing of thin V2O5 film on surface of specialized chip. According to atomic force microscopy (AFM) and scanning electron microscopy (SEM), oxide film consists of nanorods 35–75 nm in thickness and 120–285 nm in length, with crystallite size of 54 ± 4 nm. Data from Rietveld refinement of the X-ray powder diffraction results and work function value (4.54 eV) indicate high content of defects (such as oxygen vacancies) in the material. Electrophysical properties study suggests that correlated barrier hopping of the charge carriers is the main conductivity mechanism. Conductivity activation energy Ea was found to be 0.24 eV.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46683327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unique Fiber Morphologies from Emulsion Electrospinning—A Case Study of Poly(ε-caprolactone) and Its Applications 乳液静电纺丝独特的纤维形态——以聚ε-己内酯为例及其应用
IF 2.4
Colloids and Interfaces Pub Date : 2023-02-27 DOI: 10.3390/colloids7010019
Sagnik Ghosh, Anilkumar Yadav, Pramod M. Gurave, R. Srivastava
{"title":"Unique Fiber Morphologies from Emulsion Electrospinning—A Case Study of Poly(ε-caprolactone) and Its Applications","authors":"Sagnik Ghosh, Anilkumar Yadav, Pramod M. Gurave, R. Srivastava","doi":"10.3390/colloids7010019","DOIUrl":"https://doi.org/10.3390/colloids7010019","url":null,"abstract":"The importance of electrospinning to produce biomimicking micro- and nano-fibrous matrices is realized by many who work in the area of fibers. Based on the solubility of the materials to be spun, organic solvents are typically utilized. The toxicity of the utilized organic solvent could be extremely important for various applications, including tissue engineering, biomedical, agricultural, etc. In addition, the high viscosities of such polymer solutions limit the use of high polymer concentrations and lower down productivity along with the limitations of obtaining desired fiber morphology. This emphasizes the need for a method that would allay worries about safety, toxicity, and environmental issues along with the limitations of using concentrated polymer solutions. To mitigate these issues, the use of emulsions as precursors for electrospinning has recently gained significant attention. Presence of dispersed and continuous phase in emulsion provides an easy route to incorporate sensitive bioactive functional moieties within the core-sheath fibers which otherwise could only be hardly achieved using cumbersome coaxial electrospinning process in solution or melt based approaches. This review presents a detailed understanding of emulsion behavior during electrospinning along with the role of various constituents and process parameters during fiber formation. Though many polymers have been studied for emulsion electrospinning, poly(ε-caprolactone) (PCL) is one of the most studied polymers for this technique. Therefore, electrospinning of PCL based emulsions is highlighted as unique case-study, to provide a detailed theoretical understanding, discussion of experimental results along with their suitable biomedical applications.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44239505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Slow Rotation of a Soft Colloidal Sphere Normal to Two Plane Walls 垂直于两平面壁的软胶体球的缓慢旋转
IF 2.4
Colloids and Interfaces Pub Date : 2023-02-23 DOI: 10.3390/colloids7010018
C. L. Chang, H. Keh
{"title":"Slow Rotation of a Soft Colloidal Sphere Normal to Two Plane Walls","authors":"C. L. Chang, H. Keh","doi":"10.3390/colloids7010018","DOIUrl":"https://doi.org/10.3390/colloids7010018","url":null,"abstract":"The creeping flow of a viscous fluid around a soft colloidal sphere rotating about a diameter normal to two planar walls at an arbitrary position between them is theoretically investigated in the steady limit of small Reynolds numbers. The fluid velocity outside the particle consists of the general solutions of the Stokes equation in circular cylindrical and spherical coordinates, while the fluid velocity inside the porous surface layer of the particle is expressed by the general solution of the Brinkman equation in spherical coordinates. The boundary conditions are implemented first on the planar walls by means of the Hankel transforms and then at the particle and hard-core surfaces by a collocation technique. The torque exerted on the particle by the fluid is calculated as a function of the ratio of the core-to-particle radii, ratio of the particle radius to the flow penetration length of the porous layer, and relative particle-to-wall spacings over the entire range. The wall effect on the rotating soft particle can be significant. The hydrodynamic torque exerted on the confined soft sphere increases as the relative particle-to-wall spacings decrease and stays finite even when the soft sphere contacts the plane walls. It is smaller than the torque on a hard sphere (or soft one with a reduced thickness or penetration length of the porous layer), holding the other parameters constant. For a given relative wall-to-wall spacing, this torque is minimal when the particle is situated midway between the walls and rises as it locates closer to either wall.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42394570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Classification of Water-in-Oil and Oil-in-Water Droplet Generation Regimes in Flow-Focusing Microfluidic Devices 流动聚焦微流体装置中油包水和油包水滴生成机制的分类
IF 2.4
Colloids and Interfaces Pub Date : 2023-02-20 DOI: 10.3390/colloids7010017
Ampol Kamnerdsook, E. Juntasaro, N. Khemthongcharoen, M. Chanasakulniyom, W. Sripumkhai, P. Pattamang, C. Promptmas, N. Atthi, W. Jeamsaksiri
{"title":"On Classification of Water-in-Oil and Oil-in-Water Droplet Generation Regimes in Flow-Focusing Microfluidic Devices","authors":"Ampol Kamnerdsook, E. Juntasaro, N. Khemthongcharoen, M. Chanasakulniyom, W. Sripumkhai, P. Pattamang, C. Promptmas, N. Atthi, W. Jeamsaksiri","doi":"10.3390/colloids7010017","DOIUrl":"https://doi.org/10.3390/colloids7010017","url":null,"abstract":"The objective of this research work is to propose a phase diagram that can be used to find a proper operating condition for generating droplets of different types. It is found that the phase diagram of QR versus CaD can effectively classify the droplet generation into three vivid regimes: dripping, jetting and tubing. For the dripping regime, its operating condition is in the range of either CaD < 10−4 and QR < 50 or 10−3 < CaD < 10−4 and QR < 1. For the jetting regime, its operating condition is in the range of either CaD < 1.35 × 10−2 and QR > 100 or CaD > 1.35 × 10−2 and QR > 1. For the tubing regime, its operating condition is in the range of CaD > 1.35 × 10−2 and QR < 1.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46107238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信