Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation最新文献

筛选
英文 中文
KJS: a complete formal semantics of JavaScript KJS: JavaScript的完整形式语义
D. Park, Andrei Stefanescu, Grigore Roşu
{"title":"KJS: a complete formal semantics of JavaScript","authors":"D. Park, Andrei Stefanescu, Grigore Roşu","doi":"10.1145/2737924.2737991","DOIUrl":"https://doi.org/10.1145/2737924.2737991","url":null,"abstract":"This paper presents KJS, the most complete and throughly tested formal semantics of JavaScript to date. Being executable, KJS has been tested against the ECMAScript 5.1 conformance test suite, and passes all 2,782 core language tests. Among the existing implementations of JavaScript, only Chrome V8's passes all the tests, and no other semantics passes more than 90%. In addition to a reference implementation for JavaScript, KJS also yields a simple coverage metric for a test suite: the set of semantic rules it exercises. Our semantics revealed that the ECMAScript 5.1 conformance test suite fails to cover several semantic rules. Guided by the semantics, we wrote tests to exercise those rules. The new tests revealed bugs both in production JavaScript engines (Chrome V8, Safari WebKit, Firefox SpiderMonkey) and in other semantics. KJS is symbolically executable, thus it can be used for formal analysis and verification of JavaScript programs. We verified non-trivial programs and found a known security vulnerability.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115397067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 119
Efficient synthesis of probabilistic programs 概率程序的有效综合
A. Nori, Sherjil Ozair, S. Rajamani, Deepak Vijaykeerthy
{"title":"Efficient synthesis of probabilistic programs","authors":"A. Nori, Sherjil Ozair, S. Rajamani, Deepak Vijaykeerthy","doi":"10.1145/2737924.2737982","DOIUrl":"https://doi.org/10.1145/2737924.2737982","url":null,"abstract":"We show how to automatically synthesize probabilistic programs from real-world datasets. Such a synthesis is feasible due to a combination of two techniques: (1) We borrow the idea of ``sketching'' from synthesis of deterministic programs, and allow the programmer to write a skeleton program with ``holes''. Sketches enable the programmer to communicate domain-specific intuition about the structure of the desired program and prune the search space, and (2) we design an efficient Markov Chain Monte Carlo (MCMC) based synthesis algorithm to instantiate the holes in the sketch with program fragments. Our algorithm efficiently synthesizes a probabilistic program that is most consistent with the data. A core difficulty in synthesizing probabilistic programs is computing the likelihood L(P | D) of a candidate program P generating data D. We propose an approximate method to compute likelihoods using mixtures of Gaussian distributions, thereby avoiding expensive computation of integrals. The use of such approximations enables us to speed up evaluation of the likelihood of candidate programs by a factor of 1000, and makes Markov Chain Monte Carlo based search feasible. We have implemented our algorithm in a tool called PSKETCH, and our results are encouraging PSKETCH is able to automatically synthesize 16 non-trivial real-world probabilistic programs.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117320838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 48
Stateless model checking concurrent programs with maximal causality reduction 无状态模型检查最大因果约简并发程序
Jeff Huang
{"title":"Stateless model checking concurrent programs with maximal causality reduction","authors":"Jeff Huang","doi":"10.1145/2737924.2737975","DOIUrl":"https://doi.org/10.1145/2737924.2737975","url":null,"abstract":"We present maximal causality reduction (MCR), a new technique for stateless model checking. MCR systematically explores the state-space of concurrent programs with a provably minimal number of executions. Each execution corresponds to a distinct maximal causal model extracted from a given execution trace, which captures the largest possible set of causally equivalent executions. Moreover, MCR is embarrassingly parallel by shifting the runtime exploration cost to offline analysis. We have designed and implemented MCR using a constraint-based approach and compared with iterative context bounding (ICB) and dynamic partial order reduction (DPOR) on both benchmarks and real-world programs. MCR reduces the number of executions explored by ICB and ICB+DPOR by orders of magnitude, and significantly improves the scalability, efficiency, and effectiveness of the state-of-the-art for both state-space exploration and bug finding. In our experiments, MCR has also revealed several new data races and null pointer dereference errors in frequently studied real-world programs.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131023370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 88
Static detection of asymptotic performance bugs in collection traversals 集合遍历中渐近性能错误的静态检测
Oswaldo Olivo, Işıl Dillig, Calvin Lin
{"title":"Static detection of asymptotic performance bugs in collection traversals","authors":"Oswaldo Olivo, Işıl Dillig, Calvin Lin","doi":"10.1145/2737924.2737966","DOIUrl":"https://doi.org/10.1145/2737924.2737966","url":null,"abstract":"This paper identifies and formalizes a prevalent class of asymptotic performance bugs called redundant traversal bugs and presents a novel static analysis for automatically detecting them. We evaluate our technique by implementing it in a tool called CLARITY and applying it to widely-used software packages such as the Google Core Collections Library, the Apache Common Collections, and the Apache Ant build tool. Across 1.6M lines of Java code, CLARITY finds 92 instances of redundant traversal bugs, including 72 that have never been previously reported, with just 5 false positives. To evaluate the performance impact of these bugs, we manually repair these programs and find that for an input size of 50,000, all repaired programs are at least 2.45 faster than their original code.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"105 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114930171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 89
Verification of producer-consumer synchronization in GPU programs GPU程序中生产者-消费者同步的验证
Rahul Sharma, Michael A. Bauer, A. Aiken
{"title":"Verification of producer-consumer synchronization in GPU programs","authors":"Rahul Sharma, Michael A. Bauer, A. Aiken","doi":"10.1145/2737924.2737962","DOIUrl":"https://doi.org/10.1145/2737924.2737962","url":null,"abstract":"Previous efforts to formally verify code written for GPUs have focused solely on kernels written within the traditional data-parallel GPU programming model. No previous work has considered the higher performance, but more complex, warp-specialized kernels based on producer-consumer named barriers available on current hardware. In this work we present the first formal operational semantics for named barriers and define what it means for a warp-specialized kernel to be correct. We give algorithms for verifying the correctness of warp-specialized kernels and prove that they are both sound and complete for the most common class of warp-specialized programs. We also present WEFT, a verification tool for checking warp-specialized code. Using WEFT, we discover several non-trivial bugs in production warp-specialized kernels.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128542273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
The Push/Pull model of transactions 事务的推/拉模型
Eric Koskinen, Matthew J. Parkinson
{"title":"The Push/Pull model of transactions","authors":"Eric Koskinen, Matthew J. Parkinson","doi":"10.1145/2737924.2737995","DOIUrl":"https://doi.org/10.1145/2737924.2737995","url":null,"abstract":"We present a general theory of serializability, unifying a wide range of transactional algorithms, including some that are yet to come. To this end, we provide a compact semantics in which concurrent transactions PUSH their effects into the shared view (or UNPUSH to recall effects) and PULL the effects of potentially uncommitted concurrent transactions into their local view (or UNPULL to detangle). Each operation comes with simple criteria given in terms of commutativity (Lipton's left-movers and right-movers). The benefit of this model is that most of the elaborate reasoning (coinduction, simulation, subtle invariants, etc.) necessary for proving the serializability of a transactional algorithm is already proved within the semantic model. Thus, proving serializability (or opacity) amounts simply to mapping the algorithm on to our rules, and showing that it satisfies the rules' criteria.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127237348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Finding counterexamples from parsing conflicts 从解析冲突中找到反例
Chinawat Isradisaikul, A. Myers
{"title":"Finding counterexamples from parsing conflicts","authors":"Chinawat Isradisaikul, A. Myers","doi":"10.1145/2737924.2737961","DOIUrl":"https://doi.org/10.1145/2737924.2737961","url":null,"abstract":"Writing a parser remains remarkably painful. Automatic parser generators offer a powerful and systematic way to parse complex grammars, but debugging conflicts in grammars can be time-consuming even for experienced language designers. Better tools for diagnosing parsing conflicts will alleviate this difficulty. This paper proposes a practical algorithm that generates compact, helpful counterexamples for LALR grammars. For each parsing conflict in a grammar, a counterexample demonstrating the conflict is constructed. When the grammar in question is ambiguous, the algorithm usually generates a compact counterexample illustrating the ambiguity. This algorithm has been implemented as an extension to the CUP parser generator. The results from applying this implementation to a diverse collection of faulty grammars show that the algorithm is practical, effective, and suitable for inclusion in other LALR parser generators.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"670 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120971812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Synthesizing racy tests 合成活泼的测试
Malavika Samak, M. Ramanathan, S. Jagannathan
{"title":"Synthesizing racy tests","authors":"Malavika Samak, M. Ramanathan, S. Jagannathan","doi":"10.1145/2737924.2737998","DOIUrl":"https://doi.org/10.1145/2737924.2737998","url":null,"abstract":"Subtle concurrency errors in multithreaded libraries that arise because of incorrect or inadequate synchronization are often difficult to pinpoint precisely using only static techniques. On the other hand, the effectiveness of dynamic race detectors is critically dependent on multithreaded test suites whose execution can be used to identify and trigger races. Usually, such multithreaded tests need to invoke a specific combination of methods with objects involved in the invocations being shared appropriately to expose a race. Without a priori knowledge of the race, construction of such tests can be challenging. In this paper, we present a lightweight and scalable technique for synthesizing precisely these kinds of tests. Given a multithreaded library and a sequential test suite, we describe a fully automated analysis that examines sequential execution traces, and produces as its output a concurrent client program that drives shared objects via library method calls to states conducive for triggering a race. Experimental results on a variety of well-tested Java libraries yield 101 synthesized multithreaded tests in less than four minutes. Analyzing the execution of these tests using an off-the-shelf race detector reveals 187 harmful races, including several previously unreported ones. Our implementation, named NARADA, and the results of our experiments are available at http://www.csa.iisc.ernet.in/~sss/tools/narada.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116141234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 44
Verification of a cryptographic primitive: SHA-256 (abstract) 加密原语的验证:SHA-256(摘要)
A. Appel
{"title":"Verification of a cryptographic primitive: SHA-256 (abstract)","authors":"A. Appel","doi":"10.1145/2737924.2774972","DOIUrl":"https://doi.org/10.1145/2737924.2774972","url":null,"abstract":"A full formal machine-checked verification of a C program: the OpenSSL implementation of SHA-256. This is an interactive proof of functional correctness in the Coq proof assistant, using the Verifiable C program logic. Verifiable C is a separation logic for the C language, proved sound w.r.t. the operational semantics for C, connected to the CompCert verified optimizing C compiler.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115781168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Type-and-example-directed program synthesis 面向类型和示例的程序合成
Peter-Michael Osera, S. Zdancewic
{"title":"Type-and-example-directed program synthesis","authors":"Peter-Michael Osera, S. Zdancewic","doi":"10.1145/2737924.2738007","DOIUrl":"https://doi.org/10.1145/2737924.2738007","url":null,"abstract":"This paper presents an algorithm for synthesizing recursive functions that process algebraic datatypes. It is founded on proof-theoretic techniques that exploit both type information and input–output examples to prune the search space. The algorithm uses refinement trees, a data structure that succinctly represents constraints on the shape of generated code. We evaluate the algorithm by using a prototype implementation to synthesize more than 40 benchmarks and several non-trivial larger examples. Our results demonstrate that the approach meets or outperforms the state-of-the-art for this domain, in terms of synthesis time or attainable size of the generated programs.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129527818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 224
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信