{"title":"Verification of producer-consumer synchronization in GPU programs","authors":"Rahul Sharma, Michael A. Bauer, A. Aiken","doi":"10.1145/2737924.2737962","DOIUrl":null,"url":null,"abstract":"Previous efforts to formally verify code written for GPUs have focused solely on kernels written within the traditional data-parallel GPU programming model. No previous work has considered the higher performance, but more complex, warp-specialized kernels based on producer-consumer named barriers available on current hardware. In this work we present the first formal operational semantics for named barriers and define what it means for a warp-specialized kernel to be correct. We give algorithms for verifying the correctness of warp-specialized kernels and prove that they are both sound and complete for the most common class of warp-specialized programs. We also present WEFT, a verification tool for checking warp-specialized code. Using WEFT, we discover several non-trivial bugs in production warp-specialized kernels.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2737962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Previous efforts to formally verify code written for GPUs have focused solely on kernels written within the traditional data-parallel GPU programming model. No previous work has considered the higher performance, but more complex, warp-specialized kernels based on producer-consumer named barriers available on current hardware. In this work we present the first formal operational semantics for named barriers and define what it means for a warp-specialized kernel to be correct. We give algorithms for verifying the correctness of warp-specialized kernels and prove that they are both sound and complete for the most common class of warp-specialized programs. We also present WEFT, a verification tool for checking warp-specialized code. Using WEFT, we discover several non-trivial bugs in production warp-specialized kernels.