Cold Spring Harbor Molecular Case Studies最新文献

筛选
英文 中文
2022: a pivotal year for diagnosis and treatment of rare genetic diseases. 2022 年:罕见遗传病诊断和治疗的关键一年。
IF 1.8
Cold Spring Harbor Molecular Case Studies Pub Date : 2022-03-24 Print Date: 2022-02-01 DOI: 10.1101/mcs.a006204
Stephen F Kingsmore
{"title":"2022: a pivotal year for diagnosis and treatment of rare genetic diseases.","authors":"Stephen F Kingsmore","doi":"10.1101/mcs.a006204","DOIUrl":"10.1101/mcs.a006204","url":null,"abstract":"<p><p>The start of 2022 is an inflection point in the development of diagnostics and treatments for rare genetic diseases in prenatal, pediatric, and adult individuals-the theme of this special issue. Here I briefly review recent developments in two pivotal aspects of genetic disease diagnostics and treatments: education and equitable implementation.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/97/6f/MCS006204Kin.PMC8958907.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10450940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rare diseases: human genome research is coming home. 罕见疾病:人类基因组研究回家了。
IF 1.8
Cold Spring Harbor Molecular Case Studies Pub Date : 2022-03-24 Print Date: 2022-02-01 DOI: 10.1101/mcs.a006210
Hans-Hilger Ropers, Clara D van Karnebeek
{"title":"Rare diseases: human genome research is coming home.","authors":"Hans-Hilger Ropers, Clara D van Karnebeek","doi":"10.1101/mcs.a006210","DOIUrl":"10.1101/mcs.a006210","url":null,"abstract":"<p><p>After a long and largely disappointing detour, Genome Research has reidentified Rare Diseases as a major opportunity for improving health care and a clue to understanding gene and genome function. In this Special Issue of <i>CSH Molecular Case Studies</i> on Rare Diseases, several invited Perspectives, numerous Case Reports, and this Editorial itself address recent breakthroughs as well as unsolved problems in this wide field. These range from exciting prospects for gap-free diagnostic whole-genome sequencing to persisting problems related to identifying and distinguishing pathogenic and benign variants; and from the good news that soon, the United Kingdom will no longer be the only country to have introduced whole-genome sequencing into health care to the sobering conclusion that in many countries the clinical infrastructure for bringing Genome Medicine to the patient is still lacking. With less than 5000 genes firmly implicated in disease, the identification of at least twice as many disease genes is a major challenge, and the elucidation of their function is an even larger task. But given the renewed interest in rare diseases, their importance for health care, and the vast and growing spectrum of concepts and methods for studying them, the future of Human Genome Research is bright.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40326443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inherited and de novo variants extend the etiology of TAOK1-associated neurodevelopmental disorder. 遗传和新生变异扩展了taok1相关神经发育障碍的病因学。
IF 1.8
Cold Spring Harbor Molecular Case Studies Pub Date : 2022-03-24 Print Date: 2022-02-01 DOI: 10.1101/mcs.a006180
Jesse M Hunter, Lauren J Massingham, Kandamurugu Manickam, Dennis Bartholomew, Rachel K Williamson, Jennifer L Schwab, Mohammad Marhabaie, Amy Siemon, Emily de Los Reyes, Shalini C Reshmi, Catherine E Cottrell, Richard K Wilson, Daniel C Koboldt
{"title":"Inherited and de novo variants extend the etiology of <i>TAOK1</i>-associated neurodevelopmental disorder.","authors":"Jesse M Hunter,&nbsp;Lauren J Massingham,&nbsp;Kandamurugu Manickam,&nbsp;Dennis Bartholomew,&nbsp;Rachel K Williamson,&nbsp;Jennifer L Schwab,&nbsp;Mohammad Marhabaie,&nbsp;Amy Siemon,&nbsp;Emily de Los Reyes,&nbsp;Shalini C Reshmi,&nbsp;Catherine E Cottrell,&nbsp;Richard K Wilson,&nbsp;Daniel C Koboldt","doi":"10.1101/mcs.a006180","DOIUrl":"https://doi.org/10.1101/mcs.a006180","url":null,"abstract":"<p><p>Alterations in the <i>TAOK1</i> gene have recently emerged as the cause of developmental delay with or without intellectual impairment or behavioral abnormalities (MIM # 619575). The 32 cases currently described in the literature have predominantly de novo alterations in <i>TAOK1</i> and a wide spectrum of neurodevelopmental abnormalities. Here, we report four patients with novel pathogenic <i>TAOK1</i> variants identified by research genome sequencing, clinical exome sequencing, and international matchmaking. The overlapping clinical features of our patients are consistent with the emerging core phenotype of <i>TAOK1</i>-associated syndrome: facial dysmorphism, feeding difficulties, global developmental delay, joint laxity, and hypotonia. However, behavioral abnormalities and gastrointestinal issues are more common in our cohort than previously reported. Two patients have de novo <i>TAOK1</i> variants (one missense, one splice site) consistent with most known alterations in this gene. However, we also report the first sibling pair who both inherited a <i>TAOK1</i> frameshift variant from a mildly affected mother. Our findings suggest that incomplete penetrance and variable expressivity are relatively common in <i>TAOK1</i>-associated syndrome, which holds important implications for clinical genetic testing.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/95/68/MCS006180Hun.PMC8958914.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39868560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A novel variant in DYNC1H1 could contribute to human amyotrophic lateral sclerosis-frontotemporal dementia spectrum. DYNC1H1的一种新变异可能与人类肌萎缩侧索硬化症-额颞叶痴呆谱系有关。
IF 1.8
Cold Spring Harbor Molecular Case Studies Pub Date : 2022-03-24 Print Date: 2022-02-01 DOI: 10.1101/mcs.a006096
Alexios-Fotios A Mentis, Dimitrios Vlachakis, Eleni Papakonstantinou, Ioannis Zaganas, George P Patrinos, George P Chrousos, Efthimios Dardiotis
{"title":"A novel variant in <i>DYNC1H1</i> could contribute to human amyotrophic lateral sclerosis-frontotemporal dementia spectrum.","authors":"Alexios-Fotios A Mentis,&nbsp;Dimitrios Vlachakis,&nbsp;Eleni Papakonstantinou,&nbsp;Ioannis Zaganas,&nbsp;George P Patrinos,&nbsp;George P Chrousos,&nbsp;Efthimios Dardiotis","doi":"10.1101/mcs.a006096","DOIUrl":"https://doi.org/10.1101/mcs.a006096","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) belongs to the ALS-frontotemporal dementia (FTD) spectrum and is hallmarked by upper and lower motor neuron degeneration. Here, we present a patient with a cytoplasmic dynein 1 heavy chain 1 (<i>DYNC1H1</i>) pathogenic variant who fulfilled the ALS El Escorial criteria, and we review relevant literature. Using whole-exome sequencing, we identified a deleterious point variant in <i>DYNC1H1</i> (c.4106A > G (p. Q1369R)) as a likely contributor to the ALS phenotype. In silico structural analysis, molecular dynamics simulation, and protein stability analysis predicted that this variant may increase DYNC1H1 protein stability. Moreover, this variant may disrupt binding of the transcription factor TFAP4, thus potentially acting as duon. Because (a) DYNC1H1 forms part of a ubiquitous eukaryotic motor protein complex, and (b) disruption of dynein function by perturbation of the dynein-dynactin protein complex is implicated in other motor neuron degenerative conditions, this variant could disrupt processes like retrograde axonal transport, neuronal migration, and protein recycling. Our findings expand the heterogenous spectrum of the <i>DYNC1H1</i> pathogenic variant-associated phenotype and prompt further investigations of the role of this gene in ALS.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fe/9d/MCS006096Men.PMC8958913.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39427872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Reanalysis of a novel variant in the IGF1R gene in a family with variable prenatal and postnatal growth retardation and dysmorphic features: benefits and feasibility of IUSM-URDC (Undiagnosed Rare Disease Clinic) program. 一个具有可变产前和产后生长迟缓和畸形特征的家庭中IGF1R基因新变异的再分析:IUSM-URDC(未确诊罕见病诊所)计划的益处和可行性
IF 1.8
Cold Spring Harbor Molecular Case Studies Pub Date : 2022-03-24 Print Date: 2022-02-01 DOI: 10.1101/mcs.a006170
Annalise Jacobs, Catherine Burns, Purva Patel, Kayla Treat, Benjamin M Helm, Erin Conboy, Francesco Vetrini
{"title":"Reanalysis of a novel variant in the <i>IGF1R</i> gene in a family with variable prenatal and postnatal growth retardation and dysmorphic features: benefits and feasibility of IUSM-URDC (Undiagnosed Rare Disease Clinic) program.","authors":"Annalise Jacobs,&nbsp;Catherine Burns,&nbsp;Purva Patel,&nbsp;Kayla Treat,&nbsp;Benjamin M Helm,&nbsp;Erin Conboy,&nbsp;Francesco Vetrini","doi":"10.1101/mcs.a006170","DOIUrl":"https://doi.org/10.1101/mcs.a006170","url":null,"abstract":"<p><p><i>IGF1R</i>-related disorders are associated with intrauterine growth restriction (IUGR), postnatal growth failure, short stature, microcephaly, developmental delay, and dysmorphic facial features. We report a patient who presented to medical genetics at 7 mo of age with a history of IUGR, poor feeding, mild developmental delays, microcephaly, and dysmorphic facial features. Whole-exome sequencing revealed a novel c.1464T > G p.(Cys488Trp) variant in the <i>IGF1R</i> gene, initially classified as a variation of uncertain significance (VUS). We enrolled the patient in the URDC (Undiagnosed Rare Disease Clinic) and performed additional studies including deep phenotyping and familial segregation analysis, which demonstrated that the patient's <i>IGF1R</i> VUS was present in phenotypically similar family members. Furthermore, biochemical testing revealed an elevated serum IGF-1 level consistent with abnormal IGF-1 receptor function. Workup resulted in the patient's variant being upgraded from a VUS to likely pathogenic. Our report expands the variant and phenotypic spectrum of <i>IGF1R</i>-related disorders and illustrates benefits and feasibility of reassessing a VUS beyond the initial molecular diagnosis by deep phenotyping, 3D modeling, additional biochemical testing, and familial segregation studies through the URDC, a multidisciplinary clinical program whose major goal is to end the diagnostic odyssey in patients with rare diseases.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/56/33/MCS006170Jac.PMC8958911.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39868558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ethylmalonic encephalopathy masquerading as meningococcemia. 乙基丙二酸脑病伪装成脑膜炎球菌病。
IF 1.8
Cold Spring Harbor Molecular Case Studies Pub Date : 2022-03-24 Print Date: 2022-02-01 DOI: 10.1101/mcs.a006193
Ari Horton, Kai Mun Hong, Dinusha Pandithan, Meredith Allen, Caroline Killick, Stacy Goergen, Amanda Springer, Dean Phelan, Melanie Marty, Rebecca Halligan, Joy Lee, James Pitt, Belinda Chong, John Christodoulou, Sebastian Lunke, Zornitza Stark, Michael Fahey
{"title":"Ethylmalonic encephalopathy masquerading as meningococcemia.","authors":"Ari Horton,&nbsp;Kai Mun Hong,&nbsp;Dinusha Pandithan,&nbsp;Meredith Allen,&nbsp;Caroline Killick,&nbsp;Stacy Goergen,&nbsp;Amanda Springer,&nbsp;Dean Phelan,&nbsp;Melanie Marty,&nbsp;Rebecca Halligan,&nbsp;Joy Lee,&nbsp;James Pitt,&nbsp;Belinda Chong,&nbsp;John Christodoulou,&nbsp;Sebastian Lunke,&nbsp;Zornitza Stark,&nbsp;Michael Fahey","doi":"10.1101/mcs.a006193","DOIUrl":"https://doi.org/10.1101/mcs.a006193","url":null,"abstract":"<p><p>Ethylmalonic encephalopathy (MIM #602473) is a rare autosomal recessive metabolic condition caused by biallelic variants in <i>ETHE1</i> (MIM #608451), characterized by global developmental delay, infantile hypotonia, seizures, and microvascular damage. The microvascular changes result in a pattern of relapsing spontaneous diffuse petechiae and purpura, positional acrocyanosis, and pedal edema, hemorrhagic suffusions of mucous membranes, and chronic diarrhea. Here, we describe an instructive case in which ethylmalonic encephalopathy masqueraded as meningococcal septicemia and shock. Ultrarapid whole-genome testing (time to result 60 h) and prompt biochemical analysis facilitated accurate diagnosis and counseling with rapid implementation of precision treatment for the metabolic crisis related to this condition. This case provides a timely reminder to consider rare genetic diagnoses when atypical features of more common conditions are present, with an early referral to ensure prompt biochemical and genomic diagnosis.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9d/aa/MCS006193Hor.PMC8958906.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39924099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A novel TP53 tandem duplication in a child with Li–Fraumeni syndrome 一种新的TP53串联重复在儿童Li-Fraumeni综合征
IF 1.8
Cold Spring Harbor Molecular Case Studies Pub Date : 2022-03-01 DOI: 10.1101/mcs.a006181
Feng Xu, E. Aref-Eshghi, Jinhua Wu, J. Schubert, G. Wertheim, T. Bhatti, J. Pogoriler, Maha Patel, K. Cao, Ariel Long, Zhiqian Fan, E. Denenberg, Elizabeth A. Fanning, D. Wilmoth, Minjie Luo, L. Conlin, A. Dain, Sarah E Baldino, Kristin Zelley, N. Balamuth, S. MacFarland, Marilyn M. Li, Y. Zhong
{"title":"A novel TP53 tandem duplication in a child with Li–Fraumeni syndrome","authors":"Feng Xu, E. Aref-Eshghi, Jinhua Wu, J. Schubert, G. Wertheim, T. Bhatti, J. Pogoriler, Maha Patel, K. Cao, Ariel Long, Zhiqian Fan, E. Denenberg, Elizabeth A. Fanning, D. Wilmoth, Minjie Luo, L. Conlin, A. Dain, Sarah E Baldino, Kristin Zelley, N. Balamuth, S. MacFarland, Marilyn M. Li, Y. Zhong","doi":"10.1101/mcs.a006181","DOIUrl":"https://doi.org/10.1101/mcs.a006181","url":null,"abstract":"Li–Fraumeni syndrome (LFS) is one of the most common cancer predisposition syndromes that affects both children and adults. Individuals with LFS are at an increased risk of developing various types of cancer over their lifetime including soft tissue sarcomas, osteosarcomas, breast cancer, leukemia, brain tumors, and adrenocortical carcinoma. Heterozygous germline pathogenic variants in the tumor suppressor gene TP53 are the known causal genetic defect for LFS. Single-nucleotide variants (SNVs) including missense substitutions that occur in the highly conserved DNA binding domain of the protein are the most common alterations, followed by nonsense and splice site variants. Gross copy-number changes in TP53 are rare and account for <1% of all variants. Using next-generation sequencing (NGS) panels, we identified a paternally inherited germline intragenic duplication of TP53 in a child with metastatic osteosarcoma who later developed acute myeloid leukemia (AML). Transcriptome sequencing (RNA-seq) demonstrated the duplication was tandem, encompassing exons 2–6 and 28 nt of the untranslated region (UTR) upstream of the start codon in exon 2. The inclusion of the 28 nt is expected to result in a frameshift with a stop codon 18 codons downstream from the exon 6, leading to a loss-of-function allele. This case highlights the significance of simultaneous identification of both significant copy-number variants as well as SNVs/indels using NGS panels.","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90642634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
m.3685T > C is a novel mitochondrial DNA variant that causes Leigh syndrome m.3685T > C是一种导致Leigh综合征的新型线粒体DNA变异
IF 1.8
Cold Spring Harbor Molecular Case Studies Pub Date : 2022-02-01 DOI: 10.1101/mcs.a006136
Jeffrey Jean, Eirini Christodoulou, Xiaowu Gai, B. Tamrazi, M. Vera, W. Mitchell, Ryan J. Schmidt
{"title":"m.3685T > C is a novel mitochondrial DNA variant that causes Leigh syndrome","authors":"Jeffrey Jean, Eirini Christodoulou, Xiaowu Gai, B. Tamrazi, M. Vera, W. Mitchell, Ryan J. Schmidt","doi":"10.1101/mcs.a006136","DOIUrl":"https://doi.org/10.1101/mcs.a006136","url":null,"abstract":"Variants in the mitochondrial genome can result in dysfunction of Complex I within the electron transport chain, thus causing disruptions in oxidative phosphorylation. Pathogenic variants in the MT-ND1 (NADH:ubiquinone oxidoreductase core subunit 1) gene that result in Complex I dysfunction are a known cause of Leigh syndrome. The patient is a 4-yr-old female who initially presented with generalized tonic–clonic seizures, with other symptoms of Leigh syndrome becoming apparent after the seizures. A three-generation pedigree revealed no family history of mitochondrial disorders. Laboratory studies were remarkable for elevated blood lactate, alanine, and GDF15. T2-weighted magnetic resonance imaging (MRI) revealed bilateral asymmetric signal hyperintensities in the basal ganglia, specifically in the bilateral putamen and right caudate. Magnetic resonance spectroscopy showed regionally elevated glucose and lactate. Mitochondrial respiratory chain enzyme analysis on skin fibroblasts demonstrated slightly reduced Complex I function. A 16-gene dystonia panel and chromosomal microarray analysis did not identify any disease-causing variants. Combined exome and mitochondrial genome sequencing identified the m.3685T > C (MT-ND1 p.Tyr127His) variant with 62.3% heteroplasmy with no alternative cause for the patient's condition. Mitochondrial genome sequencing of the mother demonstrated that the m.3685T > C variant occurred de novo. The m.3685T > C variant is absent from population databases. The tyrosine 127 residue is highly conserved, and several nearby pathogenic variants in the MT-ND1 gene have been previously associated with Leigh syndrome. We propose that the m.3685T > C variant is a novel mitochondrial DNA variant that causes Leigh syndrome, and we classify this variant as likely pathogenic based on currently available information.","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88457800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mild case of sodium-dependent multivitamin transporter (SMVT) deficiency illustrating the importance of treatment response in variant classification 钠依赖性多维生素转运体(SMVT)缺乏症一例,说明治疗反应在变异分类中的重要性
IF 1.8
Cold Spring Harbor Molecular Case Studies Pub Date : 2022-02-01 DOI: 10.1101/mcs.a006185
Ingeborg Hauth, H. Waterham, R. Wanders, S. N. van der Crabben, C. V. van Karnebeek
{"title":"A mild case of sodium-dependent multivitamin transporter (SMVT) deficiency illustrating the importance of treatment response in variant classification","authors":"Ingeborg Hauth, H. Waterham, R. Wanders, S. N. van der Crabben, C. V. van Karnebeek","doi":"10.1101/mcs.a006185","DOIUrl":"https://doi.org/10.1101/mcs.a006185","url":null,"abstract":"Sodium-dependent multivitamin transporter (SMVT) deficiency is a recently described multivitamin-responsive inherited metabolic disorder (IMD) of which the phenotypic spectrum and response to treatment remains to be elucidated. So far, four pediatric patients have been described in three case reports with symptoms ranging from severe neurodevelopmental delay to feeding problems and failure to thrive, who demonstrated significant improvement after initiation of enhancement of targeted multivitamin treatment (biotin, pantothenic acid, and lipoic acid). We describe a fifth case of a patient presenting at the relatively mild end of the phenotypic spectrum with failure to thrive, frequent vomiting and metabolic acidosis with hypoglycemia, and mild osteopenia, who was diagnosed with SMVT deficiency due to compound heterozygous variants in SLC5A6. Additional genetic testing of variants of unknown significance (VUSs) as well as the clinical improvement in all aspects of the patient's disease upon initiation of treatment with biotin and pantothenic acid (plus lipoate as antioxidant) aided in the confirmation of this diagnosis. This case report aims to enhance recognition of the broad phenotypic spectrum of SMVT deficiency due to SLC5A6 mutations and discusses the different treatment strategies. It demonstrates how combining biochemical and genetic testing with the evaluation of (early) treatment response (i.e., using a “diagnostic therapeuticum”) can influence confirmation of pathogenicity of genomic variants.","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86818245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A case for newborn screening for pyridoxine-dependent epilepsy 新生儿吡哆醇依赖性癫痫筛查1例
IF 1.8
Cold Spring Harbor Molecular Case Studies Pub Date : 2022-02-01 DOI: 10.1101/mcs.a006197
C. Coughlin, Laura A Tseng, C. V. van Karnebeek
{"title":"A case for newborn screening for pyridoxine-dependent epilepsy","authors":"C. Coughlin, Laura A Tseng, C. V. van Karnebeek","doi":"10.1101/mcs.a006197","DOIUrl":"https://doi.org/10.1101/mcs.a006197","url":null,"abstract":"Pyridoxine-dependent epilepsy due to mutations in ALDH7A1 (PDH-ALDH7A1) is a highly treatable developmental and epileptic encephalopathy. Pharmacologic doses of pyridoxine are associated with dramatic clinical seizure improvement, and most patients achieve adequate seizure control with pyridoxine alone. Unfortunately, some patients with PDE-ALDH7A1 have died prior to when the diagnosis was made and subsequent treatment with pyridoxine could be implemented, highlighting the importance of a timely diagnosis. Although critical for seizure control, pyridoxine treatment alone is not sufficient for normal outcomes as most patients suffer intellectual and developmental delay. Adjunct lysine reduction therapies are associated with significant developmental improvements, although these treatments have limited efficacy if delayed after the first few months of life. Recently two biomarkers were identified that overcome previous technical hurdles for newborn screening. Herein we provide commentary that PDE-ALDH7A1 meets both current and historic criteria for newborn screening, and that a neonatal diagnosis and treatment can both reduce mortality from uncontrolled seizures and significantly improve the cognitive delay that is pervasive in this treatable disorder.","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79403122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信