结构化学最新文献

筛选
英文 中文
Electrostatically driven kinetic inverse CO2/C2H2 separation in LTA-type zeolites LTA 型沸石中的静电驱动动力学逆 CO2/C2H2 分离技术
IF 5.9 4区 化学
结构化学 Pub Date : 2024-07-23 DOI: 10.1016/j.cjsc.2024.100394
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li
{"title":"Electrostatically driven kinetic inverse CO2/C2H2 separation in LTA-type zeolites","authors":"Yongheng Ren ,&nbsp;Yang Chen ,&nbsp;Hongwei Chen ,&nbsp;Lu Zhang ,&nbsp;Jiangfeng Yang ,&nbsp;Qi Shi ,&nbsp;Lin-Bing Sun ,&nbsp;Jinping Li ,&nbsp;Libo Li","doi":"10.1016/j.cjsc.2024.100394","DOIUrl":"10.1016/j.cjsc.2024.100394","url":null,"abstract":"<div><p>The identical molecular size and similar physical properties of carbon dioxide (CO<sub>2</sub>) and acetylene (C<sub>2</sub>H<sub>2</sub>) make their adsorptive separation extremely challenging to achieve with most adsorbents. Reports on the separation of CO<sub>2</sub> and C<sub>2</sub>H<sub>2</sub> mixtures by zeolites are even rarer with the mechanism of adsorptive separation requiring further exploration. In this paper, we report that ion modulation of zeolite 5A promotes the difference in kinetic diffusion of CO<sub>2</sub> and C<sub>2</sub>H<sub>2</sub>, realizing the inverse separation of zeolite from selective adsorption of C<sub>2</sub>H<sub>2</sub> to selective adsorption of CO<sub>2</sub>. Creating a compact pore space restricting the orientation of gas molecules enables charge recognition. The positive electrostatic potential at the pore openings was utilized to hinder the diffusion of C<sub>2</sub>H<sub>2</sub> between the cages while ensuring the transfer of CO<sub>2</sub>, increasing their diffusion differences in pore channels and leading to the CO<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> kinetic selectivity of 31.97. Grand canonical Monte Carlo (GCMC) simulation demonstrates that the CO<sub>2</sub> distribution in K-5A-<em>β</em> is significantly higher than that of C<sub>2</sub>H<sub>2</sub>. Dynamic breakthrough experiments verify the excellent performance of material in practical CO<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> separation, for CO<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> (50/50 and 1/99, V/V) mixtures can be separated in one step, thus directly generating high purity C<sub>2</sub>H<sub>2</sub> (&gt; 99.95%), which provides a promising thought for the zeolite-based separation of CO<sub>2</sub> and C<sub>2</sub>H<sub>2</sub>.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 10","pages":"Article 100394"},"PeriodicalIF":5.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission 铱和钌配合物的二元和异质结构微板:制备、表征和热响应发射
IF 5.9 4区 化学
结构化学 Pub Date : 2024-07-15 DOI: 10.1016/j.cjsc.2024.100393
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao
{"title":"Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission","authors":"Chun-Yun Ding ,&nbsp;Ru-Yuan Zhang ,&nbsp;Yu-Wu Zhong ,&nbsp;Jiannian Yao","doi":"10.1016/j.cjsc.2024.100393","DOIUrl":"10.1016/j.cjsc.2024.100393","url":null,"abstract":"<div><p>Thermo-responsive microcrystals exhibiting obvious emission intensity or color changes have great potentials in sensing, information encryption, and microelectronics. We report herein the binary assembly of a blue-emissive iridium complex and a red-emissive ruthenium complex into homogeneously-doped or optically-heterostructured microcrystals with thermo-responsive properties. Depending on the assembly conditions, lateral or longitudinal triblock heterostructures with a microplate shape are obtained, which display distinct emission pattern changes upon heating as a result of the decreased efficiency of energy transfer. In addition, branched heterostructures are prepared by a stepwise assembly. The luminescence polarization of the homogeneously-doped binary crystals and the waveguiding property of the longitudinal triblock heterostructure are further examined. This work evidences the versatility of transition metal complexes in the assembly into various luminescent nano/micro structures with potential applications in thermo-sensing and nanophotonics.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 10","pages":"Article 100393"},"PeriodicalIF":5.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141694127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge 具有高有序纳米结构的纳米材料:定义、影响和未来挑战
IF 5.9 4区 化学
结构化学 Pub Date : 2024-07-14 DOI: 10.1016/j.cjsc.2024.100392
Ningxiang Wu, Huaping Zhao, Yong Lei
{"title":"Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge","authors":"Ningxiang Wu,&nbsp;Huaping Zhao,&nbsp;Yong Lei","doi":"10.1016/j.cjsc.2024.100392","DOIUrl":"10.1016/j.cjsc.2024.100392","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 11","pages":"Article 100392"},"PeriodicalIF":5.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141706356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving highly-efficient room-temperature phosphorescence with a nylon matrix 利用尼龙基质实现高效室温磷光效应
IF 5.9 4区 化学
结构化学 Pub Date : 2024-07-09 DOI: 10.1016/j.cjsc.2024.100391
Dian-Xue Ma , Yu-Wu Zhong
{"title":"Achieving highly-efficient room-temperature phosphorescence with a nylon matrix","authors":"Dian-Xue Ma ,&nbsp;Yu-Wu Zhong","doi":"10.1016/j.cjsc.2024.100391","DOIUrl":"10.1016/j.cjsc.2024.100391","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 9","pages":"Article 100391"},"PeriodicalIF":5.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141707666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies 硫化物全固态电池中的阴极锂离子界面传输:挑战与改进策略
IF 5.9 4区 化学
结构化学 Pub Date : 2024-07-09 DOI: 10.1016/j.cjsc.2024.100390
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui
{"title":"Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies","authors":"Yue Zheng ,&nbsp;Tianpeng Huang ,&nbsp;Pengxian Han ,&nbsp;Jun Ma ,&nbsp;Guanglei Cui","doi":"10.1016/j.cjsc.2024.100390","DOIUrl":"10.1016/j.cjsc.2024.100390","url":null,"abstract":"<div><p>Interface is a necessary channel of carrier permeation in sulfide-based all-solid-state lithium battery (ASSLB). Homogeneous and fast lithium-ion (Li<sup>+</sup>) interfacial transport of cathode is the overriding premise for high capability of ASSLBs. However, the inherent transport heterogeneity of crystalline materials in cathode and the cathode active material (CAM)/sulfide solid electrolyte (SSE) interfacial issues result in high interfacial impedance, decreasing the Li<sup>+</sup> transfer kinetics. In this review, we outline the Li<sup>+</sup> transport properties of CAMs and SSEs, followed by a discussion of their interfacial electro-chemo-mechanical issues. Commentary is also provided on the solutions to the multiple-scale interfacial Li<sup>+</sup> transport failure. Furthermore, the underlying interdependent mechanisms between electrodes are summarized and overviewed. Finally, we suggest future paths to better comprehend and promote the interfacial Li<sup>+</sup> transport in ASSLBs. This review provides an in-depth understanding of cathodal interfacial issues and the proposed improvement strategies will provide guidance for further advancement of high-performance ASSLBs.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 10","pages":"Article 100390"},"PeriodicalIF":5.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141705275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling 通过调节激子-朋子耦合实现 0D 金属卤化物 (EATMP)SbBr5 中的压力诱导发射
IF 5.9 4区 化学
结构化学 Pub Date : 2024-07-01 DOI: 10.1016/j.cjsc.2024.100333
{"title":"Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling","authors":"","doi":"10.1016/j.cjsc.2024.100333","DOIUrl":"10.1016/j.cjsc.2024.100333","url":null,"abstract":"<div><p>Zero-dimensional (0D) hybrid metal halides are considered as promising light-emitting materials due to their unique broadband emission from self-trapped excitons (STEs). Despite substantial progress in the development of these materials, the photoluminescence quantum yields (PLQY) of hybrid Sb–Br analogs have not fully realized the capabilities of these materials, necessitating a better fundamental understanding of the structure-property relationship. Here, we have achieved a pressure-induced emission in 0D (EATMP)SbBr<sub>5</sub> (EATMP = (2-aminoethyl)trimethylphosphanium) and the underlying mechanisms are investigated using <em>in situ</em> experimental characterization and first-principles calculations. The pressure-induced reduction in the overlap between the STE states and ground states (GSs) results in the suppression of phonon-assisted non-radiative decay. The photoluminescence (PL) evolution is systematically demonstrated to be controlled by the pressure-regulated exciton-phonon coupling, which can be quantified using Huang-Rhys factor <em>S</em>. Through detailed studies of the <em>S</em>-PLQY relation in a series of 0D hybrid antimony halides, we establish a quantitative structure-property relationship that regulating <em>S</em> value toward 21 leads to the optimized emission. This work not only sheds light on pressure-induced emission in 0D hybrid metal halides but also provides valuable insights into the design principles for enhancing the PLQY in this class of materials.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 7","pages":"Article 100333"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141047768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2 通过介孔二氧化钛上支持的超细钯纳米团簇的光热协同作用实现乌尔曼偶联反应
IF 5.9 4区 化学
结构化学 Pub Date : 2024-07-01 DOI: 10.1016/j.cjsc.2024.100305
{"title":"Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2","authors":"","doi":"10.1016/j.cjsc.2024.100305","DOIUrl":"10.1016/j.cjsc.2024.100305","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 7","pages":"Article 100305"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide 促进卟啉基 Sp2 碳共轭共价有机框架中的能量转移途径,实现硫化物的选择性光催化氧化
IF 5.9 4区 化学
结构化学 Pub Date : 2024-07-01 DOI: 10.1016/j.cjsc.2024.100299
{"title":"Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide","authors":"","doi":"10.1016/j.cjsc.2024.100299","DOIUrl":"10.1016/j.cjsc.2024.100299","url":null,"abstract":"<div><p>The sp<sup>2</sup> carbon-conjugated covalent organic frameworks (COFs) with fully π-conjugated lattice and high chemical stability are promising heterogeneous photocatalysts. Herein, we report the design and synthesis of a novel palladium (Pd) porphyrin-based sp<sup>2</sup> carbon-conjugated COF (PdPor-sp<sup>2</sup>c-COF) with an eclipsed AA stacking 2D structure. Interestingly, PdPor-sp<sup>2</sup>c-COF showed high crystallinity, good chemical stability, and a broad absorption of visible light. Moreover, compared to our previously reported metal-free Por-sp<sup>2</sup>c-COF, PdPor-sp<sup>2</sup>c-COF displays an improved photocatalytic performance in the selective aerobic oxidation of sulfides under green light irradiation. The systematic mechanistic studies testified that the enhanced photocatalytic activity can be ascribed to promoting energy transfer pathway over PdPor-sp<sup>2</sup>c-COF. Our study clearly demonstrates that it is favorable to promote the energy transfer pathway in sp<sup>2</sup> carbon-conjugated COFs by using metalloporphyrin-based molecular building blocks. This work will inspire us to design and synthesize novel photocatalysts based on COFs for the selective aerobic oxidation.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 7","pages":"Article 100299"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation 将零维多孔有机笼互连到 8 纳米以下的纳米薄膜中,实现生物启发式分离
IF 5.9 4区 化学
结构化学 Pub Date : 2024-07-01 DOI: 10.1016/j.cjsc.2024.100312
{"title":"Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation","authors":"","doi":"10.1016/j.cjsc.2024.100312","DOIUrl":"10.1016/j.cjsc.2024.100312","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 7","pages":"Article 100312"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140757669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Susceptible constriction enabling fast cycling of lithium metal in solid-state batteries: Silicon as an example 固态电池中的锂金属可通过易收缩性实现快速循环:以硅为例
IF 5.9 4区 化学
结构化学 Pub Date : 2024-07-01 DOI: 10.1016/j.cjsc.2024.100276
{"title":"Susceptible constriction enabling fast cycling of lithium metal in solid-state batteries: Silicon as an example","authors":"","doi":"10.1016/j.cjsc.2024.100276","DOIUrl":"10.1016/j.cjsc.2024.100276","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 7","pages":"Article 100276"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140786599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信