结构化学Pub Date : 2024-07-01DOI: 10.1016/j.cjsc.2024.100290
{"title":"Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting","authors":"","doi":"10.1016/j.cjsc.2024.100290","DOIUrl":"10.1016/j.cjsc.2024.100290","url":null,"abstract":"<div><p>Developing efficient bifunctional catalysts for urea oxidation reaction (UOR)/hydrogen evolution reaction (HER) is important for energy-saving hydrogen production. Herein, a catalyst with crystalline-amorphous heterostructure supported by NiCo alloy on nickel foam (NiCoO-MoO<sub><em>x</em></sub>/NC) is reported for the first time. Through simple molybdenum salt etching, 2D NiCo alloy nanosheets are transformed into a unique 3D cycad-leaf-like structure with a super-hydrophilic surface. Simultaneously, the synergistic effect between crystalline NiCoO and amorphous MoO<sub><em>x</em></sub> improves the UOR and HER activity, merely requiring 1.28 V and −45 mV potentials to reach ±10 mA cm<sup>−2</sup>, respectively. Particularly, the UOR kinetics of NiCoO-MoO<sub><em>x</em></sub>/NC is enhanced significantly compared to that of NiCoO/NC. The electronic structure of NiCoO is modified by MoO<sub><em>x</em></sub>, enabling the rapid generation of NiOOH and CoOOH active species, which would accelerate the synergistic electrocatalytic oxidation of urea molecules. This work inspires the design of highly active and stable bifunctional catalysts for urea assisted H<sub>2</sub> production.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 7","pages":"Article 100290"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
结构化学Pub Date : 2024-07-01DOI: 10.1016/j.cjsc.2024.100302
{"title":"Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries","authors":"","doi":"10.1016/j.cjsc.2024.100302","DOIUrl":"10.1016/j.cjsc.2024.100302","url":null,"abstract":"<div><p>Flexible zinc-air batteries (FZABs) are featured with safety and high theoretical capacity and become one of the ideal energy supply devices for flexible electronics. However, the lack of cost-effective electrocatalysts remains a major obstacle to their commercialization. Herein, we synthesized a porous dodecahedral nitrogen-doped carbon (NC) material with Co and Mn bimetallic co-embedding (Co<sub><em>x</em></sub>Mn<sub>1−<em>x</em></sub>@NC) as a highly efficient oxygen reduction reaction (ORR) catalyst for ZABs. The incorporation of Mn effectively modulates the electronic structure of Co sites, which may lead to optimized energetics with oxygen-containing intermediates thereby significantly enhancing catalytic performance. Notably, the optimized Co<sub>4</sub>Mn<sub>1</sub>@NC catalyst exhibits superior <em>E</em><sub>1/2</sub> (0.86 V) and <em>j</em><sub>L</sub> (limiting current density, 5.96 mA cm<sup>−2</sup>) compared to Pt/C and other recent reports. Moreover, aqueous ZAB using Co<sub>4</sub>Mn<sub>1</sub>@NC as a cathodic catalyst demonstrates a high peak power density of 163.9 mW cm<sup>−2</sup> and maintains stable charging and discharging for over 650 h. Furthermore, FZAB based on Co<sub>4</sub>Mn<sub>1</sub>@NC can steadily operate within the temperature range of −10 to 40 °C, demonstrating the potential for practical applications in complex climatic conditions.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 7","pages":"Article 100302"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
结构化学Pub Date : 2024-07-01DOI: 10.1016/j.cjsc.2024.100301
{"title":"2D zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction","authors":"","doi":"10.1016/j.cjsc.2024.100301","DOIUrl":"10.1016/j.cjsc.2024.100301","url":null,"abstract":"<div><p>Electrocatalytic carbon dioxide reduction reaction (eCO<sub>2</sub>RR) represents one of the most promising technologies for sustainable conversion of CO<sub>2</sub> to value-added products. Although metal-organic frameworks (MOFs) can be vastly functionalized to create active sites for CO<sub>2</sub>RR, low intrinsic electrical conductivity always makes MOFs unfavorable candidates for eCO<sub>2</sub>RR. Besides, studies on how to regulate eCO<sub>2</sub>RR activity of MOFs from linkers' functionalities viewpoint lag far behind when compared with the assembly of multinuclear metal-centered clusters. In this work, non-toxic bismuth(III) oxide (Bi<sub>2</sub>O<sub>3</sub>) was incorporated into a series of two-dimensional (2D) MOFs (Zr<strong>LX</strong>) established from Zr-oxo clusters and triazine-centered 3-<em>c</em> linkers with different functionalities (<strong>LX</strong> = 1–5) to give composites Zr<strong>LX</strong>/Bi<sub>2</sub>O<sub>3</sub>. To investigate how functionalities on linkers distantly tune the eCO<sub>2</sub>RR performance of MOFs, electron-donating/withdrawing groups were installed at triazine core or benzoate terminals. It is found that Zr<strong>L2</strong>/Bi<sub>2</sub>O<sub>3</sub> (‒F functionalized on triazine core) exhibits the best eCO<sub>2</sub>RR performance with the highest Faradaic efficiency (FE) of 96.73% at −1.07 V <em>vs.</em> RHE, the largest electroactive surface (<em>C</em><sub>dl</sub> = 4.23 mF cm<sup>−2</sup>) and the highest electrical conductivity (5.54 × 10<sup>−7</sup> S cm<sup>−1</sup>), highlighting tuning linker functionalities and hence electronic structure as an alternative way to regulate eCO<sub>2</sub>RR.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 7","pages":"Article 100301"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
结构化学Pub Date : 2024-07-01DOI: 10.1016/j.cjsc.2024.100320
{"title":"Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides","authors":"","doi":"10.1016/j.cjsc.2024.100320","DOIUrl":"10.1016/j.cjsc.2024.100320","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 7","pages":"Article 100320"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140770632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
结构化学Pub Date : 2024-06-22DOI: 10.1016/j.cjsc.2024.100370
{"title":"Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties","authors":"","doi":"10.1016/j.cjsc.2024.100370","DOIUrl":"10.1016/j.cjsc.2024.100370","url":null,"abstract":"<div><p><span><span>Currently, organic-inorganic hybrid lanthanide-incorporated polyoxometalates (POMs) have emerged as a prominent research area. Herein, we employ a simple raw material assembly method to synthesize two neoteric mixed-organic-ligand-ornamented </span>lanthanide (Ln) incorporated selenotungstates [H</span><sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>]<sub>16</sub>Na<sub>2</sub>[Ln<sub>4</sub>(H<sub>2</sub>O)<sub>6</sub>(HPZDA)<sub>2</sub>(HFMA)<sub>2</sub>W<sub>8</sub>O<sub>21</sub>][B-<em>α</em>-SeW<sub>9</sub>O<sub>33</sub>]<sub>4</sub>·29H<sub>2</sub>O (Ln = Sm<sup>3+</sup> (<strong>1</strong>), La<sup>3+</sup> (<strong>2</strong>); H<sub>2</sub>PZDA = 2,3-pyrazine dicarboxylic acid, H<sub>2</sub>FMA = fumaric acid). <strong>1</strong> and <strong>2</strong><span> are isomorphic with the polyanions constructed from four trivacant Keggin [B-</span><em>α</em>-SeW<sub>9</sub>O<sub>33</sub>]<sup>8–</sup> ({SeW<sub>9</sub>}) segments and a rigid-flexible-ligand-ornamented dodeca-nuclear W–Ln heterometallic [Ln<sub>4</sub>(H<sub>2</sub>O)<sub>6</sub>(HPZDA)<sub>2</sub>(HFMA)<sub>2</sub>W<sub>8</sub>O<sub>21</sub>]<sup>14+</sup><span> cluster. Moreover, the solid-state fluorescence spectrum of </span><strong>1</strong><span> at room temperature mainly exhibits the characteristic emission peak of Sm</span><sup>3+</sup> cations. Additionally, energy transfer from {SeW<sub>9</sub>} to Sm<sup>3+</sup> ions in <strong>1</strong> has been demonstrated by time-resolved spectroscopy. This work presents a feasible dual-ligand synergistic strategy for constructing novel POM derivatives and POM-based fluorescent materials.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 9","pages":"Article 100370"},"PeriodicalIF":5.9,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}