结构化学最新文献

筛选
英文 中文
Ni-based electrocatalysts for urea-assisted water splitting 用于脲辅助水分离的镍基电催化剂
IF 5.9 4区 化学
结构化学 Pub Date : 2024-08-01 DOI: 10.1016/j.cjsc.2024.100373
{"title":"Ni-based electrocatalysts for urea-assisted water splitting","authors":"","doi":"10.1016/j.cjsc.2024.100373","DOIUrl":"10.1016/j.cjsc.2024.100373","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100373"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity 调节掺杂碳壳 Co3O4@N,O 上的污染物吸附和过一硫酸盐活化位点以提高催化降解活性
IF 5.9 4区 化学
结构化学 Pub Date : 2024-08-01 DOI: 10.1016/j.cjsc.2024.100332
{"title":"Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity","authors":"","doi":"10.1016/j.cjsc.2024.100332","DOIUrl":"10.1016/j.cjsc.2024.100332","url":null,"abstract":"<div><p>The construction of double active sites for pollutant adsorption and peroxymonosulfate (PMS) activation on the surface of catalyst is conducive to further enhancing the pollutant-removing effect. Herein, a N,O co-doped carbon-encapsulated tricobalt tetraoxide (Co<sub>3</sub>O<sub>4</sub>@N,O–C) with double active sites is prepared by a one-step laser carbonization method. The optimized Co<sub>3</sub>O<sub>4</sub>@N,O–C shows excellent tetracycline (TC) removal ability, in which the <em>k</em> value reaches 0.608 min<sup>−1</sup>. On the surface of Co<sub>3</sub>O<sub>4</sub>@N,O–C, TC is adsorbed to the N site, and PMS is activated at the O site. Building double active sites on the catalyst surface not only avoids competition for the active site, but also confines the pollutant molecules to the surface of the catalyst, thus shortening the migration distance between reactive oxygen species (ROS) and the pollutant and boosting the removal efficiency of pollutants. In addition, the Co<sub>3</sub>O<sub>4</sub>@N,O–C/PMS system exhibits both good resistance to environmental interference and cyclic stability. Finally, a practical continuous flow reactor based on Co<sub>3</sub>O<sub>4</sub>@N,O–C catalyst is built, which shows a stable and efficient TC degradation performance.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100332"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141033209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance 一体化双层 MXene 膜可实现出色的油水分离、污染物去除和防污性能
IF 5.9 4区 化学
结构化学 Pub Date : 2024-08-01 DOI: 10.1016/j.cjsc.2024.100355
{"title":"All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance","authors":"","doi":"10.1016/j.cjsc.2024.100355","DOIUrl":"10.1016/j.cjsc.2024.100355","url":null,"abstract":"<div><p>Given the diversity and complexity of coexisting oil/dyes/heavy metal ions/microorganisms in wastewater and volatile organic compounds (VOCs) in the air, developing separation materials featured in higher separation efficiency and lower energy consumption for oil and water separation, pollutant removal, and anti-fouling is urgently needed, but it remains a major challenge till now. Herein, a multifunctional Ti<sub>3</sub>C<sub>2</sub> MXene membrane with unique double pillar support was proposed by liquid phase ultrasonication and vacuum filtration to overcome the above challenge. Introducing cetyl-trimethyl ammonium bromide (CTAB) and calcium chloride/sodium alginate (CaCl<sub>2</sub>/SA) to the MXene membrane as crossed double pillars and superhydrophilic surface increases the tolerance and wettability of the membrane. The fabricated doubly pillared MXene (d-Ti<sub>3</sub>C<sub>2</sub>) membrane exhibits superior oil/water (O/W) separation efficiency (99.76%) with flux (1.284 L m<sup>−2</sup> h<sup>−1</sup>) for canola oil and organic dye removing efficiency for methyl blue (MB) 99.85%, malachite green (MG) 100%, and methyl violet (MV) 99.72%, respectively, which is 1.05, 1.44, 1.22, and 1.28 fold compared with pre-pillared Ti<sub>3</sub>C<sub>2</sub> (p-Ti<sub>3</sub>C<sub>2</sub>). The superior anti-oil/dye/fouling is attributed to lower oil conglutination, high hydrophily, and antibacterial activity. The versatile MXene membrane also shows distinguished separation of VOCs (<em>η</em> &gt; 99%) from polluted air. The experimental and molecular dynamics (MD) computational simulation results illustrate that the superior separation efficiency of the Ti<sub>3</sub>C<sub>2</sub> MXene membrane is ascribed to the unique doubly pillared space channel. This study paves a new road to further research on one step integration strategy for complex O/W separation, wastewater and VOCs removal, and anti-fouling via tuning nano/macro architecture.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100355"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion 深入了解硫功能化富炔烃晶体框架产生的稳定、浓缩自由基及其在太阳能-蒸汽转换中的应用
IF 5.9 4区 化学
结构化学 Pub Date : 2024-08-01 DOI: 10.1016/j.cjsc.2024.100380
{"title":"Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion","authors":"","doi":"10.1016/j.cjsc.2024.100380","DOIUrl":"10.1016/j.cjsc.2024.100380","url":null,"abstract":"<div><p><span>Organic radicals feature versatile unpaired electrons<span> key for photoelectronic<span><span> and biomedical applications but remain difficult to access in stable concentrated forms. We disclose easy generation of stable, concentrated radicals from various alkynyl phenyl motifs, including 1) sulfur-functionalized alkyne-rich organic linkers in crystalline frameworks; 2) the powders of these molecules alone; 3) simple diethynylbenzenes. For Zr-based framework, the generation of radical-rich crystalline framework was achieved by thermal annealing in the range of 300–450 °C. For terminal alkynes, </span>electron paramagnetic resonance signals (EPR, indicative of free radicals) arise after air exposure or mild heating (</span></span></span><em>e.g.</em>, 70 °C). Further heating (<em>e.g.</em>, 150 °C for 3 h) raises the radical concentrations up to 3.30 mol kg<sup>−1</sup>. For more stable internal alkynes, transformations into porous radical solids can also be triggered, albeit at higher temperatures (<em>e.g.</em><span>, 250–500 °C). The resulted radical-containing solids are porous, stable to air as well as heat (up to 300–450 °C) and exhibit photothermal conversion<span><span> and solar-driven water evaporation capacity. The formation of radicals can be ascribed to extensive </span>alkyne<span> cyclizations, forming defects, dangling bonds and the associated radicals stabilized by polycyclic π-systems.</span></span></span></p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100380"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconstruction mechanism of Cu surface in CO2 reduction process 二氧化碳还原过程中铜表面的重构机制
IF 5.9 4区 化学
结构化学 Pub Date : 2024-08-01 DOI: 10.1016/j.cjsc.2024.100328
{"title":"Reconstruction mechanism of Cu surface in CO2 reduction process","authors":"","doi":"10.1016/j.cjsc.2024.100328","DOIUrl":"10.1016/j.cjsc.2024.100328","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100328"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141041594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas Ni3S2 中富含电子的 Ni2+ 促进电催化二氧化碳还原为甲酸盐和合成气
IF 5.9 4区 化学
结构化学 Pub Date : 2024-08-01 DOI: 10.1016/j.cjsc.2024.100359
{"title":"Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas","authors":"","doi":"10.1016/j.cjsc.2024.100359","DOIUrl":"10.1016/j.cjsc.2024.100359","url":null,"abstract":"<div><p>Rationally constructed new catalyst can promote carbon dioxide reduction reaction (CO<sub>2</sub>RR) to valuable carbonaceous fuels such as formate and CO, providing a promising strategy for low CO<sub>2</sub> emissions. Herein, the synthesized Ni<sub>3</sub>S<sub>2</sub>@C as a highly efficient electro-catalyst exhibits remarkable selectivity for formate with 73.9% faradaic efficiency (FE) at −0.7 V <em>vs.</em> RHE. At high applied potential, it shows a high syngas evolution with CO/H<sub>2</sub> ratios (0.54–3.15) that are suitable for typical downstream thermochemical reactions. The experimental and theoretical analyses demonstrate that the electron-rich Ni<sup>2+</sup> in Ni<sub>3</sub>S<sub>2</sub> enhances the adsorption behavior of <sup>∗</sup>OCHO intermediate, reduces the energy barrier of the formation of intermediates, and improves the selectivity of the formate product. Attenuated total reflection surface-enhanced infrared absorption spectra conducted <em>in situ</em> show that <sup>∗</sup>OCHO intermediate is more likely to be generated and adsorbed on Ni<sub>3</sub>S<sub>2</sub>, enhancing the selectivity and activity of the formate product.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100359"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of dinuclear site by orbital coupling to boost catalytic performance 通过轨道耦合调节双核位点以提高催化性能
IF 5.9 4区 化学
结构化学 Pub Date : 2024-08-01 DOI: 10.1016/j.cjsc.2024.100360
{"title":"Modulation of dinuclear site by orbital coupling to boost catalytic performance","authors":"","doi":"10.1016/j.cjsc.2024.100360","DOIUrl":"10.1016/j.cjsc.2024.100360","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100360"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PVDF-based solid-state battery 基于 PVDF 的固态电池
IF 5.9 4区 化学
结构化学 Pub Date : 2024-08-01 DOI: 10.1016/j.cjsc.2024.100347
{"title":"PVDF-based solid-state battery","authors":"","doi":"10.1016/j.cjsc.2024.100347","DOIUrl":"10.1016/j.cjsc.2024.100347","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100347"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141138051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation 异质结构 In2O3/In2S3 中空纤维可在可见光驱动下高效光催化制氢和 5-羟甲基糠醛氧化
IF 5.9 4区 化学
结构化学 Pub Date : 2024-08-01 DOI: 10.1016/j.cjsc.2024.100361
{"title":"Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation","authors":"","doi":"10.1016/j.cjsc.2024.100361","DOIUrl":"10.1016/j.cjsc.2024.100361","url":null,"abstract":"<div><p>Solar light driven hydrogen production from water splitting and oxidation of biomass-derivatives is attractive for the conversion of solar energy to high value-added chemicals. The fabrication of heterostructure photocatalysts with matched band structure between two semiconductors is a promising approach for efficient photocatalysis. In this work, a novel In<sub>2</sub>O<sub>3</sub>/In<sub>2</sub>S<sub>3</sub> heterostructured hollow fiber photocatalyst was successfully fabricated through two-step ion exchange and chemical bath deposition methods, where the In<sub>2</sub>S<sub>3</sub> nanoparticles (NPs) anchored on the surface of In<sub>2</sub>O<sub>3</sub> hollow fibers via strong interfacial interaction between the In<sub>2</sub>O<sub>3</sub> (222) and In<sub>2</sub>S<sub>3</sub> (220) facets. The photocatalyst was used for efficient visible-light-driven photocatalytic hydrogen production integrated with selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF). Compared with pristine In<sub>2</sub>O<sub>3</sub> and In<sub>2</sub>S<sub>3</sub>, the optimal In<sub>2</sub>O<sub>3</sub>/In<sub>2</sub>S<sub>3</sub> heterostructure exhibits an enhanced photocatalytic hydrogen production rate (111.2 μmol h<sup>−1</sup> g<sup>−1</sup>), HMF conversion efficiency (56%) and DFF selectivity (68%) under visible light irradiation. The experimental and theoretical investigations illustrate the phase interface between well matched In<sub>2</sub>O<sub>3</sub> (222) and In<sub>2</sub>S<sub>3</sub> (220) facets gives rise to facilitated photogenerated charge separation and transfer. This study presents the development of high-performance heterostructured photocatalysts for high efficient hydrogen production coupled with biomass oxidation.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100361"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141410359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water reduction by an organic single-chromophore photocatalyst 有机单色团光催化剂的减水作用
IF 5.9 4区 化学
结构化学 Pub Date : 2024-08-01 DOI: 10.1016/j.cjsc.2024.100376
{"title":"Water reduction by an organic single-chromophore photocatalyst","authors":"","doi":"10.1016/j.cjsc.2024.100376","DOIUrl":"10.1016/j.cjsc.2024.100376","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100376"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信