Weinan Zhang , Chengyue Sun , Ke Liu , Wenhao Shen , YiYong Wu , Liyong Yao , Qi Zhang , Wei Zhang , Li Wang
{"title":"Technical challenges of space solar power stations: Ultra-large-scale space solar array systems and space environmental effects","authors":"Weinan Zhang , Chengyue Sun , Ke Liu , Wenhao Shen , YiYong Wu , Liyong Yao , Qi Zhang , Wei Zhang , Li Wang","doi":"10.1016/j.sspwt.2024.09.003","DOIUrl":"10.1016/j.sspwt.2024.09.003","url":null,"abstract":"<div><div>Space solar power station (SSPS) are important space infrastructure for humans to efficiently utilize solar energy and can effectively reduce the pollution of fossil fuels to the earth’s natural environment. As the energy conversion system of SSPS, solar array is an important unit for the successful service of SSPS. Today, solar arrays represent the standard technology for providing energy for spacecraft, thanks to their high conversion efficiency and reliability/stability in orbit. With the development of solar arrays, many new materials, new photovoltaic devices and new control systems have emerged. Solar arrays are directly exposed to the space environment, and harsh environmental factors can degrade the performance. To ensure the long-term safe in-orbit service of SSPS as well as its ultra-large solar array, these new materials, devices, and control systems must operate certification and evaluation that can be used in space applications. In this review, the development history and research progress of SSPS and the corresponding space solar arrays are summarized and discussed, and the space environmental effects of solar arrays are analyzed at multiple levels (materials, devices, and systems). Finally, in response to the current space environmental effects of the ultra-large solar array used in the SSPS, future development trends and challenges are proposed.</div></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 2","pages":"Pages 69-87"},"PeriodicalIF":0.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Zhang, Junyi Lin, Naiying Fan, Yipeng Qie, Bin Su
{"title":"Impact of solar cell failure on the performance of solar arrays in space","authors":"Qi Zhang, Junyi Lin, Naiying Fan, Yipeng Qie, Bin Su","doi":"10.1016/j.sspwt.2024.09.002","DOIUrl":"10.1016/j.sspwt.2024.09.002","url":null,"abstract":"<div><div>Space solar power station adopts large-area solar arrays for efficient photovoltaic conversion, making it one of the best solutions to future energy problems. In-orbit failure of solar arrays can affect the service life of spacecraft, thereby it is crucial to comprehend the impact of solar cell failure on the electrical performance of solar arrays and propose appropriate circuit design criteria. The root cause of solar array failure is the degeneration of solar cells. In this paper, power loss caused by an open circuit or short circuit failure of solar cells in pure parallel and series–parallel circuits is described, and it reveals that an open circuit of the cell is more harmful in the pure parallel circuit, while a short circuit in the series–parallel circuit is more detrimental, which causes loss of electrical performance in series and parallel units, respectively. All conclusions have been validated through model calculations and corresponding experiments. The electrical loss is also influenced by the control mode. For the Maximum Power Point Tracking control mode favored by space solar power station, which can significantly increase generated power, application suggestions have been proposed based on the results of cell failure analysis. The research will provide a reference for circuit selection and boundary design for solar arrays, reducing the probability of solar array failure and saving the manufacturing and redeployment costs of space solar power station.</div></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 2","pages":"Pages 108-114"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Wang , Huaiqing Zhang , Shiwei Dong , Xinbin Hou , Li Wang , Mingyu Lu
{"title":"Theoretical and experimental studies of retro-reflective antenna array for microwave power transmission from space solar power satellite to earth","authors":"Xin Wang , Huaiqing Zhang , Shiwei Dong , Xinbin Hou , Li Wang , Mingyu Lu","doi":"10.1016/j.sspwt.2024.05.002","DOIUrl":"10.1016/j.sspwt.2024.05.002","url":null,"abstract":"<div><div>The development of space solar power satellites aims to harvest solar power by artificial satellites over the earth’s geostationary orbit and then deliver the harvested power to the earth wirelessly. The retro-reflective antenna array technique is believed to be a close-to-optimal technical approach to achieve efficient wireless power transmission from a geostationary satellite to the earth, as it is capable of generating a microwave power beam aiming at a ground station on the earth via analyzing a pilot signal broadcasted by the ground station. In this paper, some of our preliminary research outcomes on retro-reflective antenna array for space solar power applications are reported. In the theoretical part of this paper, closed-form formulations with precision better than the classic theory of phased array are derived to analyze the performance of retro-reflective antenna array when the far zone condition is not satisfied between the space solar power satellite and the ground station. In the experimental part of this paper, a bench-scale retro-reflective antenna array with physical dimensions of about 0.6 m by 0.6 m is fabricated and tested. The theoretical and experimental results demonstrate that the microwave beam generated by a satellite-borne retro-reflective antenna array could be adjusted in real time to aim at the location from which the pilot signal stems. Based on the theoretical and experimental studies of this paper, systematic research endeavors are being conducted on the retro-reflective antenna array for space solar power applications.</div></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 2","pages":"Pages 88-101"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Terrestrial transparent green energy receiving system designed for Space Solar Power Station","authors":"Ruinan Fan, Junlin Mi, Changjun Liu","doi":"10.1016/j.sspwt.2024.09.001","DOIUrl":"10.1016/j.sspwt.2024.09.001","url":null,"abstract":"<div><div>In this manuscript, we proposed the concept of a terrestrial transparent energy receiving system for a Space Solar Power Station (SSPS), aiming at solving the problems of environmental destruction and the waste of land resources caused by the construction of large area rectenna arrays at the traditional terrestrial receiving system. We also fabricated a demonstration model of the new system. The system’s energy receiving and converting device consists of many rectenna arrays that are flexible, transparent, and matching network eliminated to harvest the microwave energy averaging about 80 mW/m<sup>2</sup> on the ground from the Solar Power Satellite (SPS). The rectenna unit of the system operates at 2.45 GHz, and the measured RF to DC conversion efficiency reaches 20% at −10 dBm and up to 64.65% at 6.8 dBm. As the rectenna array of the system has the advantages of both microwave energy harvesting and <span><span>light transmittance</span><svg><path></path></svg></span>, conventional solar panels can be placed underneath to collect sunlight and convert it into electricity. It is also feasible to build “self-powered” smart agricultural greenhouses for vegetable cultivation underneath so that the collected energy can be utilized locally to avoid the waste caused by long-distance transmission. The proposed system is of great significance to the research on environmental protection and efficient utilization of land resources at the terrestrial energy receiving system of the Space Solar Power Station.</div></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 2","pages":"Pages 102-107"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongyan Xu , Bingchuan Du , Dele Shi , Xiujun Huang , Xinbin Hou
{"title":"Laser wireless power transfer system design for lunar rover","authors":"Hongyan Xu , Bingchuan Du , Dele Shi , Xiujun Huang , Xinbin Hou","doi":"10.1016/j.sspwt.2024.09.005","DOIUrl":"10.1016/j.sspwt.2024.09.005","url":null,"abstract":"<div><div>In order to address the future power generation needs for scientific exploration of the lunar permanently shadowed regions, this paper proposes a laser wireless power transfer (LWPT) system from a power source at the illuminated rim of the crater to a photovoltaic laser receiver on a rover exploring inside the permanently shadowed region. To fill a gap between the conceptual design and an operational system, the required conditions were analyzed regarding the effects of beam alignment and shaping, wavelength-dependent conversion efficiency on the system level efficiency, and a ground-based prototype system was established. Electric–electric efficiency of 11.55% was measured at a ground transmission distance of 10 m. The study is complemented by discussing optimization analysis for subsequent research, can be more effective and employed in the future.</div></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 2","pages":"Pages 129-135"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on PV array reconstruction and Full-cycle maximum power point tracking technology of space solar power station","authors":"Guoning Xu , Shuoyan Nie , Zhenyang Xiong","doi":"10.1016/j.sspwt.2024.09.004","DOIUrl":"10.1016/j.sspwt.2024.09.004","url":null,"abstract":"<div><div>Space solar power station is an energy system that converts solar energy into electrical energy in the space environment and then transmits it to the space platform or ground using wireless power transmission technology. To improve the power generation and system efficiency of the space solar power station, an adaptive and reconfigurable photovoltaic array with multi-configuration is proposed, which can avoid large attenuation of the output power and efficiency of the photovoltaic array when the photovoltaic modules have a fault occurs or the receive different irradiation intensity. Then, according to the orbit area and light condition of the space solar power station, the operation mode are divided in detail. Furthermore, a novel full-cycle and multi-mode GMPPT (maximum power point tracking) strategy is proposed. Compared to the single mode MPPT, the control strategy has shorter response time, faster convergence and higher tracking accuracy. Through the above research, the output power and photoelectric conversion efficiency of space solar power station can be significantly improved.</div></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 2","pages":"Pages 115-128"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongxia Li , Yuxin Lu , Rongxing Cao , Xuelin Yang , Xin Huang , Yucai Wang , Xianghua Zeng , Yuxiong Xue
{"title":"Study on irradiation effect and damage mechanism in cascode GaN HEMT irradiated by 10 MeV electron","authors":"Hongxia Li , Yuxin Lu , Rongxing Cao , Xuelin Yang , Xin Huang , Yucai Wang , Xianghua Zeng , Yuxiong Xue","doi":"10.1016/j.sspwt.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.sspwt.2024.06.001","url":null,"abstract":"<div><p>This study investigated the irradiation effect of cascode-structure GaN HEMT (High Electron Mobility Transistor) devices, employing high-energy electrons with an energy of 10 MeV and irradiation doses ranging from 5 to 80 Mrad(Si). The variation of electrical properties of the device under annealing condition was analyzed. Geant4 and TCAD simulations were used to analyze the irradiation effect and damage mechanisms. The results show that the threshold voltage has obvious negative drift and the drain current increases after irradiation. The threshold voltage deviation amplitude of the device increases with the increase of irradiation dose, and the maximum deviation is 1.41V. Annealing at high temperatures (80 °C, 120 °C and 145 °C) partially restores the electrical properties, with a 0.49 V restoration in threshold voltage at 145 °C. Geant4 simulations reveal that enhanced Si MOSFET is more susceptible to total dose effects. TCAD simulations of enhanced Si MOSFET devices demonstrate an increase in electric field intensity, trapped electron concentration, and hole concentration in Si and SiO<sub>2</sub> layers with the increase of irradiation dose. These findings can provide support for the space application and irradiation hardening of cascode GaN HEMT devices.</p></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 1","pages":"Pages 61-68"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950104024000051/pdfft?md5=1fdf46f05dde150539cff90df2291bb8&pid=1-s2.0-S2950104024000051-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141487613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wireless power transmission based on retro-reflective beamforming technique","authors":"Xin Wang , Mingyu Lu","doi":"10.1016/j.sspwt.2023.08.001","DOIUrl":"10.1016/j.sspwt.2023.08.001","url":null,"abstract":"<div><p>This review paper is on the retro-reflective beamforming technique for wireless power applications. The primary merit of retro-reflective beamforming technique is that wireless power transmission is augmented by radar tracking. Specifically, wireless power transmission is initiated by pilot signals broadcasted from wireless power receiver(s); and in response to the pilot signals, a wireless power transmitter delivers directional microwave power beams to the receiver(s). The microwave power beams follow the wireless power receivers’ location dynamically as long as pilot signals are broadcasted periodically. The retro-reflective beamforming technique therefore has excellent potential to accomplish efficient wireless power transmission to non-stationary wireless power receivers. This paper reviews the basic principles and potential applications of wireless power transmission based on retro-reflective beamforming technique.</p></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 1","pages":"Pages 1-16"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950104023000019/pdfft?md5=73103e27218f6a205c3978221efcc6c6&pid=1-s2.0-S2950104023000019-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135761723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charleston Dale Ambatali , Shinichi Nakasuka , Bo Yang , Naoki Shinohara
{"title":"Analysis and experimental validation of the WPT efficiency of the both-sides retrodirective system","authors":"Charleston Dale Ambatali , Shinichi Nakasuka , Bo Yang , Naoki Shinohara","doi":"10.1016/j.sspwt.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.sspwt.2024.04.001","url":null,"abstract":"<div><p>The retrodirective antenna array is considered as a mechanism to enable target tracking of a power receiver for long range wireless power transfer (WPT) due to its simplicity in implementation using only analog circuits. By installing the retrodirective capability on both the generator and rectenna arrays, a feedback loop that produces a high efficiency WPT channel is created. In this paper, we characterize the dynamics of this phenomenon using a discrete-time state-space model based on S-parameters and show that the system can naturally achieve maximum theoretical WPT efficiency. We further confirmed the theoretical analysis through a hardware experiment using a 12-port circuit board with measurable S-parameters mimicking a static wireless channel. The results collected from the hardware experiment show agreement with the proposed theoretical framework by comparing the theoretical efficiency with the measured efficiency and by showing that the collected data points follow the predicted condition to achieve maximum efficiency.</p></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 1","pages":"Pages 48-60"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950104024000026/pdfft?md5=f53579b41a02c96b9821f546c050b9ac&pid=1-s2.0-S2950104024000026-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141487614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yifan Zheng , Guodong Zhang , Zhenghao Huan , Yang Zhang , Guangfu Yuan , Qingyuan Li , Guoyu Ding , Zhaochen Lv , Wang Ni , Yuchuan Shao , Xingjiang Liu , Jifeng Zu
{"title":"Wireless laser power transmission: Recent progress and future challenges","authors":"Yifan Zheng , Guodong Zhang , Zhenghao Huan , Yang Zhang , Guangfu Yuan , Qingyuan Li , Guoyu Ding , Zhaochen Lv , Wang Ni , Yuchuan Shao , Xingjiang Liu , Jifeng Zu","doi":"10.1016/j.sspwt.2023.12.001","DOIUrl":"10.1016/j.sspwt.2023.12.001","url":null,"abstract":"<div><p>Laser power transmission (LPT) technology has gained significant attention in recent years due to its potential to revolutionize energy transfer in a more efficient, safe, and eco-friendly manner. Compared to traditional wired power transmission, LPT offers contactless transmission, high efficiency, and enhanced safety. This technology has the potential to significantly improve energy transmission efficiency, reduce energy loss, and minimize environmental pollution. Additionally, LPT can provide wireless power supply to mobile devices, robots, and aerospace vehicles, which can enhance device reliability and lifespan. Herein, this emerging technology could revolutionize how power is transmitted and utilized, ushering in major progress for the energy sector going forward. In this review, we provide a brief introduction to the LPT system. Then we present the development history and current status of each module separately. Following that, we introduce the expansion of the LPT system in space and underwater applications. Finally, we discuss the challenge of realizing a highly efficient LPT system and offer our perspectives on future opportunities and study directions.</p></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 1","pages":"Pages 17-26"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950104023000020/pdfft?md5=bdc47e67d74cc27012dfff1d23356ea8&pid=1-s2.0-S2950104023000020-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139395027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}