Coupling dynamic modeling and vibration control of quadruped-robot and large space structure during on-orbit assembly

Weiya Zhou , Zhe Ye , Shunan Wu , Yuanyuan Li
{"title":"Coupling dynamic modeling and vibration control of quadruped-robot and large space structure during on-orbit assembly","authors":"Weiya Zhou ,&nbsp;Zhe Ye ,&nbsp;Shunan Wu ,&nbsp;Yuanyuan Li","doi":"10.1016/j.sspwt.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>The coupling dynamics problem between the walking robot and large space structures during on-orbit assembly is investigated in this paper. The quadruped walking robot is first chosen as the assembly robot, which is equivalent to a spring-mass-damper system with seven degrees of freedom. The primary goal of the robot is to stably walk on a large space structure while carrying an assembly module to a designated location for assembly. Combining with the characteristic of incrementally increasing of the large space structure, a revival dynamic modeling method is then presented. On this basis, the coupled dynamic model of the robot and the space truss structure is developed. To simulate robot walking, the motion gait of the quadruped walking robot is designed as a diagonal alternating gait. The moving load are considered as disturbance inputs associated with the truss, and an active vibration controller is developed to deal with the disturbance. The numerical simulation of a quadruped walking robot moving on a space truss structure is finally presented with different cases. The results demonstrate that the quadruped walking robot movement has a significant influence on the space truss structure, and the mutual disturbances between the two are effectively suppressed by the proposed controller.</div></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"2 1","pages":"Pages 1-9"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Solar Power and Wireless Transmission","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950104025000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The coupling dynamics problem between the walking robot and large space structures during on-orbit assembly is investigated in this paper. The quadruped walking robot is first chosen as the assembly robot, which is equivalent to a spring-mass-damper system with seven degrees of freedom. The primary goal of the robot is to stably walk on a large space structure while carrying an assembly module to a designated location for assembly. Combining with the characteristic of incrementally increasing of the large space structure, a revival dynamic modeling method is then presented. On this basis, the coupled dynamic model of the robot and the space truss structure is developed. To simulate robot walking, the motion gait of the quadruped walking robot is designed as a diagonal alternating gait. The moving load are considered as disturbance inputs associated with the truss, and an active vibration controller is developed to deal with the disturbance. The numerical simulation of a quadruped walking robot moving on a space truss structure is finally presented with different cases. The results demonstrate that the quadruped walking robot movement has a significant influence on the space truss structure, and the mutual disturbances between the two are effectively suppressed by the proposed controller.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信