Changming Li , Lin Huangfu , Jianling Li , Shiqiu Gao , Guangwen Xu , Jian Yu
{"title":"Recent advances in catalytic filters for integrated removal of dust and NOx from flue gas: fundamentals and applications","authors":"Changming Li , Lin Huangfu , Jianling Li , Shiqiu Gao , Guangwen Xu , Jian Yu","doi":"10.1016/j.recm.2022.06.002","DOIUrl":"10.1016/j.recm.2022.06.002","url":null,"abstract":"<div><p>Catalytic filters including catalytic bag filters and catalytic filter candles, which couple the filters with denitrification catalysts to obtain the ability to simultaneously remove SO<em><sub>x</sub></em>, NO<em><sub>x</sub></em> and dust, have become the promising applied technology for the integrated flue gas treatment because of their huge advantages in reducing the initial investment, floor occupancy and maintenance cost. In this review, we will summarize the recent advances in the development of catalytic filters in terms of their process principles, filter material, denitrification catalysts, structure-function relationships and industrial applications. Moreover, suggestions about the current challenges and future opportunities are also given from the viewpoints of catalysts and filter material design, catalytic filter preparation methods, and their poisoning and regeneration, etc. With the further development of theory and engineering research, the extensive industrial application of catalytic filters in the field of multiple pollutants flue gas treatment is highly anticipated in the future.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 3","pages":"Pages 275-289"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000228/pdfft?md5=1bcf444ee7d013332af8f612290537d5&pid=1-s2.0-S2772443322000228-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82311615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyang Li, Yongxia Zhu, Baofang Jin, Yongjun Ji, Lei Shi, Dongxing Fu, D. Bai, F. Su
{"title":"Introduction of ZnO, Sn, and P Promoters in CuO/CeO2 Catalysts for Improved Production of Dimethyldichlorosilane in the Rochow-Müller Reaction","authors":"Xinyang Li, Yongxia Zhu, Baofang Jin, Yongjun Ji, Lei Shi, Dongxing Fu, D. Bai, F. Su","doi":"10.1016/j.recm.2022.07.001","DOIUrl":"https://doi.org/10.1016/j.recm.2022.07.001","url":null,"abstract":"","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78389817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A mini review on recent advances in thermocatalytic hydrogenation of carbon dioxide to value-added chemicals and fuels","authors":"Heng Zhao, Chunyang Zeng, N. Tsubaki","doi":"10.1016/j.recm.2022.07.002","DOIUrl":"https://doi.org/10.1016/j.recm.2022.07.002","url":null,"abstract":"","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"230 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78795674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoguang San, Yue Zhang, Lei Zhang, Guosheng Wang, Jiaqi Kang, Dan Meng, Yanbai Shen
{"title":"Ultrasensitive and selective sensing material of ultrafine WO3 nanoparticles for the detection of ppb-level NO2","authors":"Xiaoguang San, Yue Zhang, Lei Zhang, Guosheng Wang, Jiaqi Kang, Dan Meng, Yanbai Shen","doi":"10.1016/j.recm.2022.06.005","DOIUrl":"https://doi.org/10.1016/j.recm.2022.06.005","url":null,"abstract":"","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85142326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crystal structure and catalytic performance for direct oxidation of propylene to acrylic acid of MoVTeNbOx prepared by high-pressure hydrothermal synthesis","authors":"Yiwen Wang, Yaoxin Fan, Shuangming Li, Yujiao Wang, Yanan Chen, Dongqi Liu, W. Wei, Sansan Yu","doi":"10.1016/j.recm.2022.07.004","DOIUrl":"https://doi.org/10.1016/j.recm.2022.07.004","url":null,"abstract":"","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82904153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhennan Han , Junrong Yue , Chao Wang , Xi Zeng , Jian Yu , Fang Wang , Yu Guan , Xuejing Liu , Fu Ding , Liangliang Fu , Xin Jia , Xingfei Song , Dingrong Bai , Guangwen Xu
{"title":"Micro reactors for measurement and analysis of thermochemical gas-solid reactions","authors":"Zhennan Han , Junrong Yue , Chao Wang , Xi Zeng , Jian Yu , Fang Wang , Yu Guan , Xuejing Liu , Fu Ding , Liangliang Fu , Xin Jia , Xingfei Song , Dingrong Bai , Guangwen Xu","doi":"10.1016/j.recm.2022.04.001","DOIUrl":"10.1016/j.recm.2022.04.001","url":null,"abstract":"<div><p>Micro reactors are the essential part of thermal analysis techniques for characterizing gas-solid thermochemical reactions. The dynamic and diversified needs for investigating various complex materials and gas-solid reactions have led to the development of a variety of different microreactors over the years. Solid particles in microreactors are normally heated by furnaces from outside, resistive elements from inside, direct contact with bed particles, or other non-resistively methods. Solid particles can be fixed or fluidized in reactors where gas-solid contacts vary from diffusion-dominated to nearly diffusion-free conditions. Based on these characteristics, in this article we presented a broad classification for microreactors used for thermal analysis of gas-solid reactions. For each of the most popularly used microreactors, their features and limitations are briefly reviewed. By addressing the diversity of the microreactors used in the field of thermal analysis, the review aims at providing general guidance for the selection and operation of the microreactor to satisfy one's practical specific needs.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 2","pages":"Pages 152-166"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000204/pdfft?md5=cac8edcf4e280e6632e0d8639e9f7e2a&pid=1-s2.0-S2772443322000204-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85649836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haibo Wang , Zhiwei Zhen , Shuhua Yao , Shifeng Li
{"title":"Synthesis of high acid-resistant ultramarine blue pigment through coal gangue, industrial zeolite waste and corn straw waste recycling","authors":"Haibo Wang , Zhiwei Zhen , Shuhua Yao , Shifeng Li","doi":"10.1016/j.recm.2022.03.003","DOIUrl":"10.1016/j.recm.2022.03.003","url":null,"abstract":"<div><p>The massive stacking of the coal gangue (CG) in the coal mining process, discarded industrial zeolite waste (IZW) and agricultural corn straw (CS) has caused serious environmental pollution and resource waste. To achieve the recycling of solid waste, an economical method for synthesizing ultramarine blue pigment using a two-step calcination process of the CG/IZW/Na<sub>2</sub>CO<sub>3</sub>/S/CS with the mass rates of 1.50: 0.50: 2.50: 3.50: 1.00 (the first stage at 400°C for 0.50 h and the second stage at 900°C for 2.00 h) is proposed in this paper. The structure and composition of the synthesis ultramarine blue pigment were characterized by XRD, FT-IR, Raman, as well as SEM technologies, and results showed it had a sodalite structure containing S<sub>3</sub><sup>−</sup> and S<sub>2</sub><sup>−</sup> radicals. Furthermore, SiO<sub>2</sub> (1.20 mL of tetraethyl orthosilicate (TEOS) as the precursor and 4.50 mL of NH<sub>3</sub>•H<sub>2</sub>O as the catalyst) coated the synthesis ultramarine blue pigment (1.00 g) was successfully synthesized by sol-gel technique to improve the acid resistance of the pigment (pH=2.50-3.00). This new method of preparing ultramarine blue pigments not only achieves resource reuse at a low cost but also improves the acid rain resistance of the pigments.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 2","pages":"Pages 137-145"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000198/pdfft?md5=51177520703bde0227d15396f7faf014&pid=1-s2.0-S2772443322000198-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74716167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solvent-free synthesis of hierarchical Tb3+-doped Yttrium benzene-1,3,5-tricarboxylate metal organic framework nanosheets for fast and highly sensitive fluorescence detection of Fe3+ and Cr2O72− ions","authors":"Ji Zhang , Jiaqiang Liu , Xianliang Li , Yan Xu","doi":"10.1016/j.recm.2022.06.001","DOIUrl":"https://doi.org/10.1016/j.recm.2022.06.001","url":null,"abstract":"<div><p>Controllable synthesis of luminescent metal-organic frameworks (MOFs) having the merits of ease preparation, outstanding sensitivity and stability is of great significance for exploring their efficient sensing applications. Herein, we report a hierarchical terbium-doped yttrium-benzene-1,3,5-tricarboxylate MOF nanosheet <em>via</em> solvent-free synthetic strategy with a topological structure of MIL-78. The fluorescence property of the hierarchical Tb<sup>3+</sup>-doped Y-based MOF nanosheets can be tuned by adjusting the molar ratio of Tb<sup>3+</sup> to Y<sup>3+</sup> ions, and the Tb<sub>0.5</sub>Y<sub>0.5</sub>-MOF nanosheet-like morphology with the optimum characteristic Tb<sup>3+</sup> ion green emission exhibited great potential acting as fluorescence probe for highly sensitive Fe<sup>3+</sup> and Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup> detection. The Tb<sup>3+</sup>-doped Y-MOF nanosheets show a fast response time of less than 1 s for Fe<sup>3+</sup> ions. They also have low detection limits of 0.40 and 0.26 µM toward Fe<sup>3+</sup> and Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup> ions, respectively, as well as excellent stability. This work paves the way to explore intriguing hierarchical MOF-based luminescent materials for efficient fluorescence sensing applications.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 2","pages":"Pages 146-151"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000216/pdfft?md5=80eb9bbfe1da0c46392042d65afbf33d&pid=1-s2.0-S2772443322000216-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137090459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongrui Yao , Lijuan Li , Wanshen Li , Duo Qi , Wanlu Fu , Na Wang
{"title":"Application of nanomaterials in waterborne coatings: A review","authors":"Hongrui Yao , Lijuan Li , Wanshen Li , Duo Qi , Wanlu Fu , Na Wang","doi":"10.1016/j.recm.2022.06.004","DOIUrl":"10.1016/j.recm.2022.06.004","url":null,"abstract":"<div><p>Combining nanomaterials and waterborne resins is an effective way to obtain high-performance waterborne coatings. This paper provides a comprehensive overview on waterborne nanocomposite coatings based on the latest research progress at home and abroad. Specifically, the characteristics of zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and binary hybrid (0D/1D, 0D/2D, 1D/2D, 2D/2D) nanomaterials and their applications in waterborne coatings are coherently reviewed. Subsequently, various modification methods of nanomaterials, especially noncovalent modification and covalent modification, are analyzed in detail. Additionally, the enhancement mechanisms of nanomaterials enhancing the corrosion resistance of waterborne nanocomposite coatings are also discussed, including physical barrier mechanism and electrochemical mechanism. Finally, based on the above discussion, the outlooks for the future design of waterborne nanocomposite coating are presented.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 2","pages":"Pages 184-200"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000241/pdfft?md5=378db70a535c29ebc43bdc4344287869&pid=1-s2.0-S2772443322000241-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77410023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}