{"title":"Role of active oxygen species in metal-induced DNA strand breakage in human diploid fibroblasts","authors":"Ronald D. Snyder","doi":"10.1016/0167-8817(88)90034-X","DOIUrl":"10.1016/0167-8817(88)90034-X","url":null,"abstract":"<div><p>The ability of 6 metal salts to induce DNA damage in human diploid fibroblasts was examined. Cadmium, magnesium, manganese, chromium(VI), zinc and selenite were all shown to induce DNA strand breaks as measured by two independent assays. DNA strand breaks were repaired within 2–4 h after removal of metal and this repair appeared not to be sensitive to “long-patch” repair inhibitors. With the exception of selenite, metal-induced DNA damage appeared to be mediated via the formation of active oxygen species since oxygen scavengers when administered simultaneously with the metal, antagonized strand break formation. Selenite-induced DNA damage (as previously reported) was dependent on the formation of a selenite-glutathione conjugant and was not affected by oxygen radical scavengers. Scavenger treatment did not enhance cloning ability of metal-treated cells suggesting that DNA strand breaks may not be important in metal-induced cytotoxicity.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":"193 3","pages":"Pages 237-246"},"PeriodicalIF":0.0,"publicationDate":"1988-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(88)90034-X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14489315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mutants of Aspergillus nidulans with increased resistance to the alkylating agent, N-methyl-N′-nitro-N-nitrosoguanidine","authors":"P. Hooley, S.G. Shawcross, P. Strike","doi":"10.1016/0167-8817(88)90035-1","DOIUrl":"10.1016/0167-8817(88)90035-1","url":null,"abstract":"<div><p>The isolation and characterisation of mutants of <em>Aspergillus nidulans</em> showing resistance to MNNG is described. Such isolates were stable through prolonged subculture in the absence of the selective agent, and resistance segregated as an allele of a single gene in meiotic and mitotic analysis. MNNG-resistant strains showed an increase in resistance to EMS and UV irradiation but no cross-resistance to MMS was detected. Possible mechanisms of resistance to alkylating agents are discussed.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":"193 3","pages":"Pages 247-254"},"PeriodicalIF":0.0,"publicationDate":"1988-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(88)90035-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14412746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard A. Swirski, Susan G. Shawcross, Barry M. Faulkner, Peter Strike
{"title":"Repair of alkylation damage in the fungus Aspergillus nidulans","authors":"Richard A. Swirski, Susan G. Shawcross, Barry M. Faulkner, Peter Strike","doi":"10.1016/0167-8817(88)90036-3","DOIUrl":"10.1016/0167-8817(88)90036-3","url":null,"abstract":"<div><p>The repair of alkylation damage in <em>Aspergillus nidulans</em> was investigated. We have assayed soluble protein fractions for enzymes known to be involved in the repair of this type of damage in DNA. The presence of a glycosylase activity that can remove 3-methyladenine from DNA was demonstrated, as well as a DNA methyltransferase activity that appears to act against <em>O</em><sup>6</sup>-methylguanine.</p><p>In addition to this approach, a series of mutants were isolated which display increased sensitivity to alkylating agents (<em>sag</em> mutants). 5 such mutants were further characterized, and at least 4 are shown to map to genes which have not previously been characterized. The behaviour of double mutant combinations demonstrates the existence of at least 2 pathways for the repair of alkylation damage. The majority of the <em>sag</em> mutants (<em>sagA1, sagB2, sag4</em> and <em>sagE5</em>) exhibit an increased sensitivity to a range of alkylating agents, but not to UV light, while <em>sagC3</em>, when irradiated at the germling stage, also shows sensitivity to UV. None of the mutants isolated are defective in either the 3-methyladenine DNA glycosylase activity, or the DNA methyltransferase activity, and the nature of the defects in these strains remains to be determined.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":"193 3","pages":"Pages 255-268"},"PeriodicalIF":0.0,"publicationDate":"1988-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(88)90036-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13598262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frameshift lesions induced by oxazolopyridocarbazoles are recognized by the mismatch repair system in Escherichia coli","authors":"Brigitte René, Christian Auclair, Claude Paoletti","doi":"10.1016/0167-8817(88)90037-5","DOIUrl":"10.1016/0167-8817(88)90037-5","url":null,"abstract":"<div><p>The simple reversible intercalating agent isopropyl-OPC (iPr-OPC) induces frameshift-1 mutations in <em>Salmonella typhimurium</em> and <em>Escherichia coli</em>. The mutagenic responses of <em>S. typhimurium</em> and <em>E. coli</em> wild-type strains are not proportional to the amount of drug intercalated into double-stranded nucleic acids in living bacteria; it occurs only above a minimum level of binding. The fact that mismatch-repair-deficient (<em>mutS</em>) as well as adenine-methylation-deficient (<em>dam</em>) <em>E. coli</em> mutants are hypermutable at low concentrations of iPr-OPC suggests that the majority of mutants induced by this intercalating drug occur as mismatch-repairable mutations (or lesions) in the newly synthesized DNA strand close to the replication fork.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":"193 3","pages":"Pages 269-273"},"PeriodicalIF":0.0,"publicationDate":"1988-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(88)90037-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14412747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"pH induced damage and repair in E. coli","authors":"Javed Musarrat, Masood Ahmad","doi":"10.1016/0167-8817(88)90032-6","DOIUrl":"10.1016/0167-8817(88)90032-6","url":null,"abstract":"<div><p><em>Escherichia coli</em> lost its colony-forming ability when suspended in Tris/NaOH or Tris/Mg<sup>2+</sup> buffers of pH 10.0 and 4.0, respectively. A significant decrease in the survival of radiation-sensitive mutants <em>recA</em>, <em>polA, res, rer</em> and <em>lexA</em> was observed as compared to their wild-type counterpart under these conditions. The alkali-injured cells were found to recover when incubated at 37°C for 2 h in 0.05 M phosphate buffer of pH 8.0, whereas no such liquid holding recovery was observed in <em>recA</em> and <em>lexA</em> mutants. Recovery in phosphate buffer was not affected by metabolic inhibitors. As a result of alkali treatment, the sensitivity of bacteria to ultraviolet light (UV) was enhanced. However, on incubation for 2 h in recovery buffer at 37°C, the bacteria regained partial UV resistance. Bacteria exposed to alkaline environment exhibited an enhanced level of mutagenesis. Contrary to the treated wild-type, the mutants <em>recA</em> and <em>lexA</em> did not exhibit any increase in the mutation frequency. Alkali treatment to GC → AT transition mutants of <em>Salmonella typhimurium</em>, TA102 and TA104 resulted in the highest number of revertants per plate.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":"193 3","pages":"Pages 219-227"},"PeriodicalIF":0.0,"publicationDate":"1988-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(88)90032-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14412745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Survival and mutagenic effects of 5-azacytidine in Escherichia coli","authors":"Deepak Lal, Subhendu Som, Stanley Friedman","doi":"10.1016/0167-8817(88)90033-8","DOIUrl":"10.1016/0167-8817(88)90033-8","url":null,"abstract":"<div><p>Survival and mutagenesis caused by 5-azacytidine was studied in <em>Escherichia coli</em>. Survival was partially <em>lexA</em>- and <em>recA</em>-dependent and was decreased by the presence of a DNA (cytosine-5)methyltransferase. The <em>dcm, Msp</em>I, and <em>Eco</em>RII methyltransferase genes all decreased survival. There was no direct relationship between amount of methylase enzyme present and cell survival, but only plasmids containing a methylase gene sensitized cells to 5-azacytidine. Survival was not affected by <em>uvrA, uvrB</em> or <em>umuCD</em> mutations. Induction of <em>sulA::lacZ</em> fusions by 5-azacytidine was inhibited in strains containing elevated levels of DNA methylase. Cells resistant to 5-azacytidine when they contained a plasmid specifying the <em>Eco</em>RII methylase were sensitive if the plasmid specified the complete <em>Eco</em>RII restriction-modification system. The mechanism of cell death in these situations is therefore different.</p><p>Mutation of the <em>rpoB</em> gene by 5-azacytidine was studied. The mutation rate was decreased by the presence of <em>recA</em> and <em>lexA</em> mutations. Mutation in <em>umuCD</em> had little effect on the mutation rate. The <em>recA430</em> mutation, which does not support SOS-dependent mutagenesis induced by UV light, does support 5-azacytidine induced mutagenesis. The presence of DNA (cytosine-5)methyltransferase had no effect on the mutation rate caused by 5-azacytidine treatment.</p><p>The mutagenic and lethal lesions caused by 5-azacytidine in the absence of methylase therefore differ from the lethal lesions that occur in the presence of methylase. The former could be due to the opening of the 5-azacytosine ring in DNA. Cell death in the presence of methylase could be due to tight binding of methylase to azacytosine containing DNA as well as inhibition of induction of the SOS response.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":"193 3","pages":"Pages 229-236"},"PeriodicalIF":0.0,"publicationDate":"1988-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(88)90033-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13598260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Damage-resistant DNA synthesis in Eukaryotes","authors":"Martin F. Lavin , Alice L. Schroeder","doi":"10.1016/0167-8817(88)90030-2","DOIUrl":"10.1016/0167-8817(88)90030-2","url":null,"abstract":"<div><p>The molecular basis of sensitivity of ionizing radiation and other damaging agents is not clearly defined in eukaryotes. While a large number of mutants have been described only a few have been demonstrated to have a defect in the repair of damage to DNA. An interesting characteristic of a sub-group of these mutants, in different species extending throughout the phylogenetic scale, is the presence of damage-resistant DNA synthesis. This phenomenon is observed in cells from individuals with the genetic disorder ataxia telangiectasia, in HeLa cells treated with fluorodeoxyuridine prior to UV irradiation, in mutants of the fungus <em>Neurospora crassa</em>, the slime mould <em>Dictyostelium discoideum</em>, the fruit fly <em>Drosophila melanogaster</em> and possibly in the “wasted” mouse mutant. In the case of ataxia telangiectasia sensitivity is only observed to ionizing radiation or radiomimetic chemicals whereas sensitivity to a wider spectrum of mutagens is reported for the lower eukaryotic mutants. In all cases a reduced inhibition of DNA synthesis is obtained after exposure to an agent to which the cell type is hypersensitive. It is unclear how damage-resistant DNA synthesis contributes to increased sensitivity in these cells, but is unlikely to be the major mechanism predisposing to radiation-induced cell death. The description of a derivative of an ataxia telangiectasia cell line with normal sensitivity to radiation but still maintaining resistant DNA synthesis partially uncouples radioresistant DNA synthesis and radiosensitivity. This paper is designed to review the phenomenon of damage-resistant DNA synthesis in a number of mutants.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":"193 3","pages":"Pages 193-206"},"PeriodicalIF":0.0,"publicationDate":"1988-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(88)90030-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14100425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Bockrath , M.Z. Hodes , P. Mosbaugh , K. Valerie , J.K. de Riel
{"title":"UV mutagenesis in E. coli with excision repair initiated by uvrABC or denV gene products","authors":"R. Bockrath , M.Z. Hodes , P. Mosbaugh , K. Valerie , J.K. de Riel","doi":"10.1016/0167-8817(88)90039-9","DOIUrl":"10.1016/0167-8817(88)90039-9","url":null,"abstract":"<div><p>Mutation frequency responses produced by ultraviolet light are compared in 4 closely related strains of <em>E. coli</em> B/r having the same <em>tyr</em>(Oc) allele and different excision-repair capabilities: <em>uvr</em><sup>+</sup> (excision repair initiated by wild-type UvrABC activity), <em>uvrA</em> (excision repair defective), <em>uvrA</em>/pdenV-7 (excision repair initiated by endonuclease V of bacteriophage T4, DenV activity), and <em>uvr</em><sup>+</sup>/pdenV-7 (excision repair initiated by UvrABC and DenV activities). The production of Tyr<sup>+</sup> prototrophic mutants is classified into back-mutations and de novo or converted glutamine tRNA suppressor mutations to indicate different mutation events. Cells transformed with the plasmid pdenV-7 require larger exposures than the parent strains to produce comparible mutation frequency responses, indicating that DenV activity can repair mutagenic photoproducts. When damage reduction by UvrABC or DenV is compared for each of the specific categories of mutation, the results are consistent with the idea that pyrimidine dimers infrequently or never target back-mutations of this allele, frequently target the de novo suppressor mutations, and extensively or exclusively target the converted suppressor mutations. This analysis is based on the distinction that UvrABC-initiated excision repair recognizes dimer and non-dimer (pyrimidine (4–6) pyrimidone) photoproducts but that DenV-initiated repair recognizes only pyrimidine dimers.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":"193 2","pages":"Pages 87-96"},"PeriodicalIF":0.0,"publicationDate":"1988-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(88)90039-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14408866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Chinese hamster ovary cell line hypersensitive to ionizing radiation and deficient in repair replication","authors":"Lloyd F. Fuller, Robert B. Painter","doi":"10.1016/0167-8817(88)90041-7","DOIUrl":"10.1016/0167-8817(88)90041-7","url":null,"abstract":"<div><p>An X-ray-sensitive Chinese hamster ovary cell line was isolated by means of a semi-automated procedure in which mutagenized cells formed colonies on top of agar, were X-irradiated, and were photographed at two later times. We compared the photographs to identify colonies that displayed significant growth arrest. One of the colonies identified in this manner produced a stable line (irs1SF) that is hypersensitive to ionizing radiation. The X-ray dose at which 10% of the population survives (<em>D</em><sub>10</sub>) is 2.25 Gy for irs1SF and 5.45 Gy for the parental line. The new mutant is also moderately sensitive to ethyl methanesulfonate. irs1SF performs only half as much X-ray-induced repair replication as the parental line, indicating a defect in excision repair. This defect is believed to be the primary cause of the line's radiosensitivity. Although irs1SF repairs DNA double-strand breaks at a normal rate, it repairs single-strand breaks more slowly than normal. irs1SF has an elevated number of spontaneous chromatid aberrations and produces significantly higher numbers of X-ray-induced chromatid aberrations after exposure during the G<sub>1</sub> phase of the cell cycle. The line is hypomutable, with X-ray exposure inducing only one-third as many 6-thioguanine-resistant colonies as the parental line.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":"193 2","pages":"Pages 109-121"},"PeriodicalIF":0.0,"publicationDate":"1988-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(88)90041-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14473276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}