Yunfei Li;Shengbo Eben Li;Xingheng Jia;Shulin Zeng;Yu Wang
{"title":"FPGA accelerated model predictive control for autonomous driving","authors":"Yunfei Li;Shengbo Eben Li;Xingheng Jia;Shulin Zeng;Yu Wang","doi":"10.1108/JICV-03-2021-0002","DOIUrl":"https://doi.org/10.1108/JICV-03-2021-0002","url":null,"abstract":"Purpose - The purpose of this paper is to reduce the difficulty of model predictive control (MPC) deployment on FPGA so that researchers can make better use of FPGA technology for academic research. Design/methodology/approach - In this paper, the MPC algorithm is written into FPGA by combining hardware with software. Experiments have verified this method. Findings - This paper implements a ZYNQ-based design method, which could significantly reduce the difficulty of development. The comparison with the CPU solution results proves that FPGA has a significant acceleration effect on the solution of MPC through the method. Research limitations implications - Due to the limitation of practical conditions, this paper cannot carry out a hardware-in-the-loop experiment for the time being, instead of an open-loop experiment. Originality value - This paper proposes a new design method to deploy the MPC algorithm to the FPGA, reducing the development difficulty of the algorithm implementation on FPGA. It greatly facilitates researchers in the field of autonomous driving to carry out FPGA algorithm hardware acceleration research.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"5 2","pages":"63-71"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/10004541/10004545.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50225735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nengchao Lyu;Yugang Wang;Chaozhong Wu;Lingfeng Peng;Alieu Freddie Thomas
{"title":"Using naturalistic driving data to identify driving style based on longitudinal driving operation conditions","authors":"Nengchao Lyu;Yugang Wang;Chaozhong Wu;Lingfeng Peng;Alieu Freddie Thomas","doi":"10.1108/JICV-07-2021-0008","DOIUrl":"https://doi.org/10.1108/JICV-07-2021-0008","url":null,"abstract":"Purpose - An individual's driving style significantly affects overall traffic safety. However, driving style is difficult to identify due to temporal and spatial differences and scene heterogeneity of driving behavior data. As such, the study of real-time driving-style identification methods is of great significance for formulating personalized driving strategies, improving traffic safety and reducing fuel consumption. This study aims to establish a driving style recognition framework based on longitudinal driving operation conditions (DOCs) using a machine learning model and natural driving data collected by a vehicle equipped with an advanced driving assistance system (ADAS). Design/methodology/approach - Specifically, a driving style recognition framework based on longitudinal DOCs was established. To train the model, a real-world driving experiment was conducted. First, the driving styles of 44 drivers were preliminarily identified through natural driving data and video data; drivers were categorized through a subjective evaluation as conservative, moderate or aggressive. Then, based on the ADAS driving data, a criterion for extracting longitudinal DOCs was developed. Third, taking the ADAS data from 47 Kms of the two test expressways as the research object, six DOCs were calibrated and the characteristic data sets of the different DOCs were extracted and constructed. Finally, four machine learning classification (MLC) models were used to classify and predict driving style based on the natural driving data. Findings - The results showed that six longitudinal DOCs were calibrated according to the proposed calibration criterion. Cautious drivers undertook the largest proportion of the free cruise condition (FCC), while aggressive drivers primarily undertook the FCC, following steady condition and relative approximation condition. Compared with cautious and moderate drivers, aggressive drivers adopted a smaller time headway (THW) and distance headway (DHW). THW, time-to-collision (TTC) and DHW showed highly significant differences in driving style identification, while longitudinal acceleration (LA) showed no significant difference in driving style identification. Speed and TTC showed no significant difference between moderate and aggressive drivers. In consideration of the cross-validation results and model prediction results, the overall hierarchical prediction performance ranking of the four studied machine learning models under the current sample data set was extreme gradient boosting > multi-layer perceptron > logistic regression > support vector machine. Originality/value - The contribution of this research is to propose a criterion and solution for using longitudinal driving behavior data to label longitudinal DOCs and rapidly identify driving styles based on those DOCs and MLC models. This study provides a reference for real-time online driving style identification in vehicles equipped with onboard data acquisition equipment, such as ADA","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"5 1","pages":"17-35"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/10004514/10004519.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67851798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatio-temporal heuristic method: A trajectory planning for automatic parking considering obstacle behavior","authors":"Nianfei Gan;Miaomiao Zhang;Bing Zhou;Tian Chai;Xiaojian Wu;Yougang Bian","doi":"10.1108/JICV-01-2022-0002","DOIUrl":"https://doi.org/10.1108/JICV-01-2022-0002","url":null,"abstract":"Purpose - The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with dynamic obstacles during parallel parking. Design/methodology/approach - To deal with dynamic obstacles for autonomous vehicles during parking, a long- and short-term mixed trajectory planning algorithm is proposed in this paper. In long term, considering obstacle behavior, A-star algorithm was improved by RS curve and potential function via spatio-temporal map to obtain a safe and efficient initial trajectory. In short term, this paper proposes a nonlinear model predictive control trajectory optimizer to smooth and adjust the trajectory online based on the vehicle kinematic model. Moreover, the proposed method is simulated and verified in four common dynamic parking scenarios by ACADO Toolkit and QPOASE solver. Findings - Compared with the spline optimization method, the results show that the proposed method can generate efficient obstacle avoidance strategies, safe parking trajectories and control parameters such as the front wheel angle and velocity in high-efficient central processing units. Originality/value - It is aimed at improving the robustness of automatic parking system and providing a reference for decision-making in a dynamic environment.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"5 3","pages":"177-187"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/10004521/10004527.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67856920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global path planning of unmanned vehicle based on fusion of A∗ algorithm and Voronoi field","authors":"Jiansen Zhao;Xin Ma;Bing Yang;Yanjun Chen;Zhenzhen Zhou;Pangyi Xiao","doi":"10.1108/JICV-01-2022-0001","DOIUrl":"https://doi.org/10.1108/JICV-01-2022-0001","url":null,"abstract":"Purpose - Since many global path planning algorithms cannot achieve the planned path with both safety and economy, this study aims to propose a path planning method for unmanned vehicles with a controllable distance from obstacles. Design/methodology/approach - First, combining satellite image and the Voronoi field algorithm (VFA) generates rasterized environmental information and establishes navigation area boundary. Second, establishing a hazard function associated with navigation area boundary improves the evaluation function of the A∗ algorithm and uses the improved A∗ algorithm for global path planning. Finally, to reduce the number of redundant nodes in the planned path and smooth the path, node optimization and gradient descent method (GDM) are used. Then, a continuous smooth path that meets the actual navigation requirements of unmanned vehicle is obtained. Findings - The simulation experiment proved that the proposed global path planning method can realize the control of the distance between the planned path and the obstacle by setting different navigation area boundaries. The node reduction rate is between 33.52% and 73.15%, and the smoothness meets the navigation requirements. This method is reasonable and effective in the global path planning process of unmanned vehicle and can provide reference to unmanned vehicles' autonomous obstacle avoidance decision-making. Originality/value - This study establishes navigation area boundary for the environment based on the VFA and uses the improved A∗ algorithm to generate a navigation path that takes into account both safety and economy. This study also proposes a method to solve the redundancy of grid environment path nodes and large-angle steering and to smooth the path to improve the applicability of the proposed global path planning method. The proposed global path planning method solves the requirements of path safety and smoothness.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"5 3","pages":"250-259"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/10004521/10004533.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67857760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A bi-level optimization framework for charging station design problem considering heterogeneous charging modes","authors":"Le Zhang;Ziling Zeng;Kun Gao","doi":"10.1108/JICV-07-2021-0009","DOIUrl":"https://doi.org/10.1108/JICV-07-2021-0009","url":null,"abstract":"Purpose - The purpose of this paper is to optimize the design of charging station deployed at the terminal station for electric transit, with explicit consideration of heterogenous charging modes. Design/methodology/approach - The authors proposed a bi-level model to optimize the decision-making at both tactical and operational levels simultaneously. Specifically, at the operational level (i.e. lower level), the service schedule and recharging plan of electric buses are optimized under specific design of charging station. The objective of lower-level model is to minimize total daily operational cost. This model is solved by a tailored column generation-based heuristic algorithm. At the tactical level (i.e. upper level), the design of charging station is optimized based upon the results obtained at the lower level. A tabu search algorithm is proposed subsequently to solve the upper-level model. Findings - This study conducted numerical cases to validate the applicability of the proposed model. Some managerial insights stemmed from numerical case studies are revealed and discussed, which can help transit agencies design charging station scientifically. Originality/value - The joint consideration of heterogeneous charging modes in charging station would further lower the operational cost of electric transit and speed up the market penetration of battery electric buses.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"5 1","pages":"8-16"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/10004514/10004518.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68013993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Copyright page","authors":"","doi":"","DOIUrl":"https://doi.org/","url":null,"abstract":"","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"5 2","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/10004541/10004543.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50225734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The verbiage in variable message signs and traffic diversion during crash incidents","authors":"Sailesh Acharya;Michelle Mekker","doi":"10.1108/JICV-06-2022-0022","DOIUrl":"https://doi.org/10.1108/JICV-06-2022-0022","url":null,"abstract":"Purpose - WIth limited research on the effects of variable message sign (VMS) message content and verbiage on revealed driver behavior, this study aims to investigate how different verbiage of crash-related messages are related to the diversion rate. Design/methodology/approach - Using ordered logit models, the associations of message verbiage with diversion rates during crash incidents were assessed using five years of VMS message history within a section of I-15 in the state of Utah. Findings - A significant impact of message verbiage on the diversion rate was observed. Based on the analysis results, the crash message verbiage with the highest diversion was found to be miles to crash 1 \"prepare to stop,\" followed by crash location 1 delay information, miles to crash 1 \"use caution\" 1 lane of the crash, etc. In addition, the diversion rate was found to be correlated to some roadway characteristics (e.g. occupancy in mainline, weather condition and light condition) along with the temporal variations. Research limitations/implications - These findings could be used by transportation agencies (e.g. state department of transportation [DOTs]) to make informed decisions about choosing the message verbiage during future crash incidents. This study also revealed that higher diversion rates are associated with a shorter distance between the crash location and VMS device location, recommending increasing the number of VMS devices, particularly in crash-prone areas.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"5 3","pages":"333-344"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/10004521/10004540.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67856074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenhao Yu;Jun Li;Li-Ming Peng;Xiong Xiong;Kai Yang;Hong Wang
{"title":"SOTIF risk mitigation based on unified ODD monitoring for autonomous vehicles","authors":"Wenhao Yu;Jun Li;Li-Ming Peng;Xiong Xiong;Kai Yang;Hong Wang","doi":"10.1108/JICV-04-2022-0015","DOIUrl":"https://doi.org/10.1108/JICV-04-2022-0015","url":null,"abstract":"Purpose - The purpose of this paper is to design a unified operational design domain (ODD) monitoring framework for mitigating Safety of the Intended Functionality (SOTIF) risks triggered by vehicles exceeding ODD boundaries in complex traffic scenarios. Design/methodology/approach - A unified model of ODD monitoring is constructed, which consists of three modules: weather condition monitoring for unusual weather conditions, such as rain, snow and fog; vehicle behavior monitoring for abnormal vehicle behavior, such as traffic rule violations; and road condition monitoring for abnormal road conditions, such as road defects, unexpected obstacles and slippery roads. Additionally, the applications of the proposed unified ODD monitoring framework are demonstrated. The practicability and effectiveness of the proposed unified ODD monitoring framework for mitigating SOTIF risk are verified in the applications. Findings - First, the application of weather condition monitoring demonstrates that the autonomous vehicle can make a safe decision based on the performance degradation of Lidar on rainy days using the proposed monitoring framework. Second, the application of vehicle behavior monitoring demonstrates that the autonomous vehicle can properly adhere to traffic rules using the proposed monitoring framework. Third, the application of road condition monitoring demonstrates that the proposed unified ODD monitoring framework enables the ego vehicle to successfully monitor and avoid road defects. Originality/value - The value of this paper is that the proposed unified ODD monitoring framework establishes a new foundation for monitoring and mitigating SOTIF risks in complex traffic environments.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"5 3","pages":"157-166"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/10004521/10004525.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67856917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multimodal critical-scenarios search method for test of autonomous vehicles","authors":"Tianyue Feng;Lihao Liu;Xingyu Xing;Junyi Chen","doi":"10.1108/JICV-04-2022-0016","DOIUrl":"https://doi.org/10.1108/JICV-04-2022-0016","url":null,"abstract":"Purpose - The purpose of this paper is to search for the critical-scenarios of autonomous vehicles (AVs) quickly and comprehensively, which is essential for verification and validation (V&V). Design/methodology/approach - The author adopted the index F1 to quantitative critical-scenarios' coverage of the search space and proposed the improved particle swarm optimization (IPSO) to enhance exploration ability for higher coverage. Compared with the particle swarm optimization (PSO), there were three improvements. In the initial phase, the Latin hypercube sampling method was introduced for a uniform distribution of particles. In the iteration phase, the neighborhood operator was adapted to explore more modals with the particles divided into groups. In the convergence phase, the convergence judgment and restart strategy were used to explore the search space by avoiding local convergence. Compared with the Monte Carlo method (MC) and PSO, experiments on the artificial function and critical-scenarios search were carried out to verify the efficiency and the application effect of the method. Findings - Results show that IPSO can search for multimodal critical-scenarios comprehensively, with a stricter threshold and fewer samples in the experiment on critical-scenario search, the coverage of IPSO is 14% higher than PSO and 40% higher than MC. Originality/value - The critical-scenarios' coverage of the search space is firstly quantified by the index F1, and the proposed method has higher search efficiency and coverage for the critical-scenarios search of AVs, which shows application potential for V&V.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"5 3","pages":"167-176"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/10004521/10004526.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67856916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating safety and liability of autonomous vehicles: Bayesian random parameter ordered probit model analysis","authors":"Quan Yuan;Xuecai Xu;Tao Wang;Yuzhi Chen","doi":"10.1108/JICV-04-2022-0012","DOIUrl":"https://doi.org/10.1108/JICV-04-2022-0012","url":null,"abstract":"Purpose - This study aims to investigate the safety and liability of autonomous vehicles (AVs), and identify the contributing factors quantitatively so as to provide potential insights on safety and liability of AVs. Design/methodology/approach - The actual crash data were obtained from California DMV and Sohu websites involved in collisions of AVs from 2015 to 2021 with 210 observations. The Bayesian random parameter ordered probit model was proposed to reflect the safety and liability of AVs, respectively, as well as accommodating the heterogeneity issue simultaneously. Findings - The findings show that day, location and crash type were significant factors of injury severity while location and crash reason were significant influencing the liability. Originality/value - The results provide meaningful countermeasures to support the policymakers or practitioners making strategies or regulations about AV safety and liability.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"5 3","pages":"199-205"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/10004521/10004529.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67856919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}