Intelligent Pharmacy最新文献

筛选
英文 中文
The importance of in-silico studies in drug discovery 药物发现中硅学研究的重要性
Intelligent Pharmacy Pub Date : 2024-08-01 DOI: 10.1016/j.ipha.2024.01.010
{"title":"The importance of in-silico studies in drug discovery","authors":"","doi":"10.1016/j.ipha.2024.01.010","DOIUrl":"10.1016/j.ipha.2024.01.010","url":null,"abstract":"<div><p>The use of in-silico research in drug development is growing. Aspects of drug discovery and development, such as virtual ligand screening and profiling, target and lead finding, and compound library creation, are simulated by computational approaches. Databases, pharmacophores, homology models, quantitative structure–activity connections, machine learning, data mining, network analysis tools, and computer-based data analysis tools are examples of in-silico techniques. These techniques are mostly applied in conjunction with the production of in vitro data to build models that facilitate the identification and refinement of new compounds by providing insight into their features related to absorption, distribution, metabolism, and excretion.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X24000200/pdfft?md5=a7867f2e1e88920b4714446ae3598312&pid=1-s2.0-S2949866X24000200-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141990558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive peptides derived from the enzymatic hydrolysis of cowhide collagen for the potential treatment of atherosclerosis: A computational approach 通过酶水解牛皮胶原蛋白提取的生物活性肽可用于治疗动脉粥样硬化:一种计算方法
Intelligent Pharmacy Pub Date : 2024-08-01 DOI: 10.1016/j.ipha.2024.05.004
{"title":"Bioactive peptides derived from the enzymatic hydrolysis of cowhide collagen for the potential treatment of atherosclerosis: A computational approach","authors":"","doi":"10.1016/j.ipha.2024.05.004","DOIUrl":"10.1016/j.ipha.2024.05.004","url":null,"abstract":"<div><p>Cowhide collagen hydrolysates (CCHs) are peptides and amino acids obtained from the partial hydrolysis of collagen. These have numerous potential applications in the food, biomedical, and pharmaceutical industries. The study analyzed the physicochemical, antioxidant, and anti-atherosclerosis properties of collagen hydrolysates (CCHs) from cowhide using <em>in silico</em> methods. Proteins were identified <em>in silico</em> based on their molecular weights and origin from the protein database (UniProtKB). Using bioinformatics tools, numerous physicochemical properties (toxicity and amino acid composition) were determined. The identified proteins were subsequently subjected to an <em>in silico</em> enzymatic hydrolysis using pepsin, thermolysin, and proteinase K. The peptides obtained were characterized. Molecular docking was conducted between the peptides generated <em>in silico</em> and the three target enzymes (3-Hydroxy-3-Methylglutaryl-CoA (HMG-CoA) reductase, cyclooxygenase-2, and Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase). Two cowhide collagens were identified, F1MJQ6 and G3MZI7, with molecular weights of 172,076 and 184,867 ​Da, respectively. A compositional analysis of F1MJQ6 and G3MZI7 revealed the significant presence of glycine residues at 25% and 23%, and proline residues at 16% and 18%, respectively. The G3MZI7 and F1MJQ6 proteins exhibited a high concentration of both essential and semi-essential amino acids. The molecular docking results indicate that the antioxidant peptides ADF, PHF, and LW (novel potential anti-atherosclerosis peptides released by enzymatic hydrolysis with pepsin, thermolysin, and proteinase K) are the most promising candidates for further development as inhibitors of HMG-CoA reductase, cyclo-oxygenase-2, and NADPH oxidase. <em>In silico</em> analysis revealed that cowhide collagen hydrolysates exhibited particularly significant antioxidant and anti-atherosclerosis properties.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X24000649/pdfft?md5=cc419310465d774ff59c2aac885be063&pid=1-s2.0-S2949866X24000649-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141037354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The fermented milk can be a natural ally against obesity? Investigation of bovine milk fermentation by Lacticaseibacillus casei LBC 237, screening, and In silico predictions of bioactive peptides for obesity control 发酵牛奶能否成为防治肥胖症的天然盟友?牛乳发酵乳酸酶杆菌 LBC 237 的研究、筛选以及用于控制肥胖的生物活性肽的硅学预测
Intelligent Pharmacy Pub Date : 2024-08-01 DOI: 10.1016/j.ipha.2024.05.009
{"title":"The fermented milk can be a natural ally against obesity? Investigation of bovine milk fermentation by Lacticaseibacillus casei LBC 237, screening, and In silico predictions of bioactive peptides for obesity control","authors":"","doi":"10.1016/j.ipha.2024.05.009","DOIUrl":"10.1016/j.ipha.2024.05.009","url":null,"abstract":"<div><p>The increasing quest for therapeutic alternatives in treating non-communicable chronic diseases like obesity has propelled research into bioactive peptides, with a particular focus on milk due to its rich protein composition and associated health benefits. Milk fermentation, a traditional process in dairy production, enhances the bioactivity of peptides, broadening their potential therapeutic uses. This study investigated the anti-obesity potential of peptides from bovine milk fermented by <em>Lacticaseibacillus casei</em> LBC 237, identifying 143 peptides, notably LGPV and EVPMP. <em>In silico</em> analyses revealed that LGPV and EVPMP biopeptides exhibited significant interactions with target proteins, employing various molecular interactions such as Van der Waals forces, hydrogen bonds, and electrostatic interactions. These peptides shared common binding sites in some enzymes, suggesting a similar mode of interaction between molecule and target protein, akin to key pharmaceuticals recommended for treating these pathologies. Furthermore, amino acid characteristics present in the peptides, including hydrophobic residues like Leucine, Glutamate, Valine, and Proline, proved essential for their bioactive and inhibitory activities. These findings highlight the potential of LGPV and EVPMP biopeptides as therapeutic agents in managing obesity and metabolic disorders. They provide important insights into their mechanisms of action, paving the way for future research to apply them practically in preventing and treating metabolic conditions.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X24000698/pdfft?md5=f1aaa04a5548fb0a283fe00c0055a356&pid=1-s2.0-S2949866X24000698-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141990557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
QSAR application of natural therapeutics inhibitors against Alzheimer's disease through in-silico virtual-screening, docking-simulation, molecular dynamics, and pharmacokinetic prediction analysis 通过室内虚拟筛选、对接模拟、分子动力学和药代动力学预测分析,对阿尔茨海默病天然治疗抑制剂的 QSAR 应用研究
Intelligent Pharmacy Pub Date : 2024-08-01 DOI: 10.1016/j.ipha.2023.12.004
{"title":"QSAR application of natural therapeutics inhibitors against Alzheimer's disease through in-silico virtual-screening, docking-simulation, molecular dynamics, and pharmacokinetic prediction analysis","authors":"","doi":"10.1016/j.ipha.2023.12.004","DOIUrl":"10.1016/j.ipha.2023.12.004","url":null,"abstract":"<div><p>Alzheimer's disease (AD) is a brain disorder that is known to be one of the deadliest diseases affecting humanity, especially adults from the age of sixty (60) years and above. It mostly affects thinking ability, behaviour and social skills, eventually, AD causes the brain to shrink and brain cells to die. To curb the menace of this disease, virtual screening of potent, non-toxic hybrid natural therapeutic inhibitors was performed on some inhibitors of AD. We performed simulations on the screened compounds and predicted their druggability. A model with satisfactory statistical properties was developed in this study. The ligands underwent molecular docking, C-19 exhibited the highest docked score of −12.8 ​kcal/mol against the target, while the referenced compound (harmine) indicated the lowest docked score of −8.2 ​kcal/mol. The docked complex was validated using molecular dynamic simulations. Trajectory plots of C-19 were obtained and found to be stable. C-19 was stable during the 100 ns intervals which implies that the compounds were better than the referenced compound. In addition, ADMET has demonstrated that these ligands have good pharmacokinetic properties. All the evaluations were more comprehensive and beneficial to researchers and the medical community as outstanding results were obtained.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X23001302/pdfft?md5=92629a1bf2eae34b48dd7013a0e45788&pid=1-s2.0-S2949866X23001302-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141990539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the intricacies of phytate antinutrients in millets and their therapeutic implications in breast cancer 揭示黍米中植酸抗性营养素的复杂性及其对乳腺癌的治疗意义
Intelligent Pharmacy Pub Date : 2024-08-01 DOI: 10.1016/j.ipha.2023.12.005
{"title":"Unveiling the intricacies of phytate antinutrients in millets and their therapeutic implications in breast cancer","authors":"","doi":"10.1016/j.ipha.2023.12.005","DOIUrl":"10.1016/j.ipha.2023.12.005","url":null,"abstract":"<div><p>Breast cancer remains a significant global health concern, necessitating the exploration of novel preventive and therapeutic strategies. Dietary interventions have gained substantial attention due to their potential to modulate cancer risk and progression. Millets, a group of small-seeded grasses, have emerged as promising candidates in this regard, owing to their rich nutritional composition and diverse bioactive compounds. Among these bioactive compounds, phytate antinutrients have garnered considerable interest for their potential health benefits. This review aims to unravel the intricacies of phytate antinutrients in millets and their therapeutic implications in breast cancer. Phytates are naturally occurring compounds present in various plant-based foods, including millets, and are known for their ability to chelate minerals and inhibit their bioavailability. However, recent research has shed light on the multifaceted properties of phytates, highlighting their potential as functional bioactive molecules. Phytates exhibit various anticancer properties, including “antioxidant, anti-inflammatory, and antiproliferative effects”, which have been shown to inhibit the growth and progression of breast cancer cells. Additionally, phytates have been reported to modulate key signaling pathways involved in cancer development, such as PI3K/Akt, MAPK, and NF-κB, thereby exerting their anticancer effects. Moreover, phytates demonstrate the potential to enhance the efficacy of conventional breast cancer treatments, such as chemotherapy and radiation therapy, while mitigating their adverse effects. Furthermore, the bioavailability and metabolism of phytates are complex processes influenced by factors such as food processing, gut microbiota composition, and genetic variations. Understanding these intricacies is crucial for harnessing the full potential of phytates in breast cancer prevention and treatment. In conclusion, this review provides a comprehensive overview of the intricate roles of phytate antinutrients in millets and their therapeutic implications in breast cancer. The findings suggest that millets, as a rich source of phytates, could be incorporated into dietary strategies to reduce breast cancer risk and complement existing therapeutic approaches. However, further research is warranted to elucidate the precise mechanisms of action, optimal dosage, and potential synergistic effects with other bioactive compounds. The information that is given here is supported by accurate facts and arguments that have undergone rigorous scrutiny.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X23001314/pdfft?md5=7a60ada6a931260ba11551212d20f20c&pid=1-s2.0-S2949866X23001314-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139190766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of immunomodulatory therapies with COVID-19 mortality in rheumatoid arthritis: An analysis of the FDA adverse event reporting system 类风湿关节炎患者的免疫调节疗法与 COVID-19 死亡率之间的关系:对 FDA 不良事件报告系统的分析
Intelligent Pharmacy Pub Date : 2024-08-01 DOI: 10.1016/j.ipha.2024.05.003
{"title":"Association of immunomodulatory therapies with COVID-19 mortality in rheumatoid arthritis: An analysis of the FDA adverse event reporting system","authors":"","doi":"10.1016/j.ipha.2024.05.003","DOIUrl":"10.1016/j.ipha.2024.05.003","url":null,"abstract":"<div><h3>Background</h3><p>The COVID-19 pandemic significantly affects patients with RA and other rheumatic diseases. Our study aims to explore the factors associated with COVID-19-related fatality among Rheumatoid Arthritis (RA) patients, especially immunomodulatory therapies, using the international Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS).</p></div><div><h3>Methods</h3><p>Reportes from FAERS were extracted from February 2020 to September 2022, and uesd for this cross-sectional analysis. The investigative outcome was COVID-19-related death. Age, sex, region, event date, and immunomodulatory medications classies were included as co-variates in multivariable logistic regression. In view of the different targeting and affinity of individual JAKi, Tofacitinib, Upadacitinib and Baricitinib was respectively analyzed.</p></div><div><h3>Results</h3><p>In all, 3808 cases (mean age 58.85 years, 82.8% female), 267 (7.0%) died. JAKi therapies (41.2%), followed by TNFi (37.7%), IL-1i (12.2%), IL-6i (4.1%) and Anti-CD20 (3%) were reported. Risk factors associated with COVID-19-related death in RA patients were age (odds ratio [OR]: 1.06; 95% confidence interval [CI]: 1.05–1.08; <em>p</em> ​&lt; ​0.01), male sex (1.71, 1.26–2.33; <em>p</em> ​= ​0.01) and anti-CD20 therapies (5.05; 1.40–18.19; <em>p</em> ​= ​0.013). With TNFi conference, anti-CD20 was still a risk predictor (4.29; 2.39–7.70; <em>p</em> ​&lt; ​0.01). Other DMARDs except for anti-CD20, did not confer a significant association with mortality, compared with csDMARDs or TNFi. Individual JAKi showed no obvious difference in the risk of death, compared with csDMARDs or TNFis.</p></div><div><h3>Conclusions</h3><p>Conclusions Using FAERS open access data for risk prediction of death, anti-CD20 therapies were recognized as a risk factor for COVID-19-related fatalities among RA patients, other immunomodulatory therapies were not associated with mortality, compared with csDMARDs or TNFis.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X2400056X/pdfft?md5=6bd80a6185e4a935d2ab2cce768c6ee4&pid=1-s2.0-S2949866X2400056X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141047696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Telmisartan-loaded liposomes: An innovative weapon against breast cancer 替米沙坦脂质体:抗击乳腺癌的创新武器
Intelligent Pharmacy Pub Date : 2024-08-01 DOI: 10.1016/j.ipha.2024.01.001
{"title":"Telmisartan-loaded liposomes: An innovative weapon against breast cancer","authors":"","doi":"10.1016/j.ipha.2024.01.001","DOIUrl":"10.1016/j.ipha.2024.01.001","url":null,"abstract":"<div><p>This study focuses on the development of a liposomal preparation for the targeted delivery of Telmisartan in the context of breast cancer treatment. Telmisartan, a pharmaceutical agent with potential anticancer properties, has been encapsulated within liposomes, lipid-based vesicles known for their capacity to enhance drug delivery and improve therapeutic outcomes. The formulation and characterization of Telmisartan-loaded liposomes were conducted, evaluating factors such as size, shape, and drug release profiles. The findings demonstrate that the liposomal preparation effectively encapsulates Telmisartan, maintaining its pharmacological properties. The development of such liposomal formulations holds promise for advancing breast cancer therapies, offering the potential for enhanced treatment efficacy and reduced side effects. This research contributes to the ongoing efforts to explore innovative drug delivery strategies in the realm of breast cancer treatment. Breast cancer is a pervasive and challenging malignancy affecting women worldwide. In the quest for more effective and targeted treatment approaches, the development of liposomal preparations for delivering therapeutic agents to breast cancer cells has emerged as a promising avenue. Telmisartan, originally recognized for its antihypertensive properties, has been increasingly investigated for its potential anticancer effects. This study delves into the design and evaluation of a liposomal formulation for Telmisartan, aiming to enhance its therapeutic potential in breast cancer. The formulation process involved the encapsulation of Telmisartan within lipid-based liposomes, which are well-known for their ability to carry a variety of drugs, protect them from degradation, and enhance their selective delivery to tumor cells.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X24000017/pdfft?md5=1596786390e538b379ae6753631be0ac&pid=1-s2.0-S2949866X24000017-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139539568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acalypha wilkesiana L - A potential anti-stearoyl-CoA desaturase agent: Insilico and network pharmacology studies Acalypha wilkesiana L - 一种潜在的抗硬脂酰-CoA 去饱和酶制剂:内部和网络药理学研究
Intelligent Pharmacy Pub Date : 2024-08-01 DOI: 10.1016/j.ipha.2023.12.007
{"title":"Acalypha wilkesiana L - A potential anti-stearoyl-CoA desaturase agent: Insilico and network pharmacology studies","authors":"","doi":"10.1016/j.ipha.2023.12.007","DOIUrl":"10.1016/j.ipha.2023.12.007","url":null,"abstract":"<div><p>The activity of Seborrheic dermatitis on the skin of children still remains of the dermatoses of male and female babies in the early days of their existence. <em>Acalypha wilkesiana</em> L have been employed by mothers to combat Seborrheic dermatitis, yet, the descriptors responsible for such activity as well as the nonbonding interactions between the selected phytochemicals and stearoyl-CoA desaturase has not been explored. The studied compounds were optimized using Spartan’14 software as well as molecular operating environments (MOE) for docking, Cytoscape software for compound-protein interaction network, Gromacs for molecular dynamic simulation as well ADMETSar for pharmacokinetics studies. The selected compounds proved to have anti-stearoyl-CoA desaturase properties via the calculated descriptors obtained from the chemical compounds obtained from <em>Acalypha wilkesiana</em> L as well as from the result from molecular modeling studies. The Pharmacokinetics results were observed and reported appropriately.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X23001338/pdfft?md5=bf21b043b1b223a595481f0223babd84&pid=1-s2.0-S2949866X23001338-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139191506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing oral drug delivery: The science of fast dissolving tablets (FDTs) 推进口服给药:快速溶解片剂(FDT)的科学原理
Intelligent Pharmacy Pub Date : 2024-08-01 DOI: 10.1016/j.ipha.2024.01.011
{"title":"Advancing oral drug delivery: The science of fast dissolving tablets (FDTs)","authors":"","doi":"10.1016/j.ipha.2024.01.011","DOIUrl":"10.1016/j.ipha.2024.01.011","url":null,"abstract":"<div><p>The field of oral drug delivery has witnessed significant advancements, with a focus on developing innovative formulations to address challenges associated with traditional dosage forms, especially for patients with difficulties in swallowing. Fast Dissolving Tablets (FDTs) have emerged as a promising class of tablets designed to rapidly disintegrate or dissolve in saliva, providing a convenient and patient-friendly alternative for various populations.</p><p>This article explores the unique properties, advantages, and potential applications of FDTs, emphasizing their role in overcoming challenges posed by conventional oral drug delivery systems. FDTs offer rapid dissolution within 15-120 seconds in the buccal cavity, facilitating direct absorption through the buccal mucosa and ensuring quick therapeutic effects. This characteristic proves particularly beneficial for individuals facing swallowing challenges, such as pediatric and geriatric patients, or those with conditions like dysphagia.</p><p>Recognizing the significance of FDTs, the European Pharmacopoeia (EP) has officially recognized them as “oral dissolving tablets,\" highlighting their acceptance in both academic and industrial settings. The article delves into the anatomical and physiological characteristics of the oral cavity, shedding light on the buccal epithelium, oral mucosa vascularization, and salivary flow, which play crucial roles in drug absorption.</p><p>The ideal features of FDTs include rapid dissolution or disintegration, high drug load capacity, masking of bitter taste, positive mouth feel, ease of transport, and reduced sensitivity to environmental factors. The advantages of FDTs extend to their administration for patients unable to swallow, convenient treatment for bedridden and mobile patients, enhanced mouth feel and taste masking, ease of administration, and precise dosing.</p><p>Despite their advantages, FDTs come with limitations, including issues related to mechanical strength, hygroscopic nature, brittleness, and challenges with bitter drugs or unpleasant odors. Overcoming these challenges requires a careful formulation approach to balance rapid disintegration with mechanical strength and taste masking.</p><p>The article also discusses the salient characteristics of Fast Dissolving Dosage Forms (FDDDS) and various techniques for preparing FDTs, such as freeze-drying, tablet molding, and spray drying. Additionally, it explores the role of non-invasive drug delivery systems in addressing pharmaceutical industry needs, including improving drug half-life, solubility/stability, and bioavailability.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X24000212/pdfft?md5=e5cec6d258d3bad65a1e92c82c1b4b2c&pid=1-s2.0-S2949866X24000212-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139874102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nutritional composition, antioxidant properties, and molecular docking strategy of muricidae operculum (Chicoreus ramosus) 鼠厣的营养成分、抗氧化性和分子对接策略
Intelligent Pharmacy Pub Date : 2024-08-01 DOI: 10.1016/j.ipha.2023.11.006
{"title":"Nutritional composition, antioxidant properties, and molecular docking strategy of muricidae operculum (Chicoreus ramosus)","authors":"","doi":"10.1016/j.ipha.2023.11.006","DOIUrl":"10.1016/j.ipha.2023.11.006","url":null,"abstract":"<div><p>The murrcidae gastropod operculum has many therapeutic uses in ayurveda, including treating cancer, gastric, hepatic, cardiovascular, and immunological disorders. Antibacterial, cell reinforcement, FTIR, and mass spectrum datas were used to identify important functional groups and chemical constituents in <em>Chicoreus ramosus</em> operculum concentrate. At 100 ​mg/L, the operculum extract showed stronger inhibitory movement (125 ​mm) against <em>Bacillus subtilis</em> and less (08 ​mm) against <em>Staphylococcus aureus</em>. Operculum extract's biochemical composition, total antioxidant properties, protein denaturation, metal chelation movement, all-out cell reinforcement action, and anti-diabetic action were 85.71%, 80.98%, 32.03%, and 76.47% at 1000 ​μg/mL concentration. The operculum remove FTIR showed nine significant groups, including amines, esters, and fragrant mixtures. 11 dynamic mixtures from GC–MS analysis of operculum rough concentrate. These bioactive fractions interacted with IL 23 in molecular docking experiments. Androst-1-en-3-one, Bis (2-ethylhexyl) phthalate, and 3-Methoxy-2,4,5-trifluorobenzoic acid had the highest docking scores and target protein receptor interactions. −11.9 ​kcal/mol, −08.6 ​kcal/mol and −7.7 ​kcal/mol are the maximum scores. These compounds are therapeutic and antimicrobial. These bioactive compounds in operculum extracts allow <em>C. ramosus</em> to be used in conventional medicine and may lead to the development of new drugs.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X2300120X/pdfft?md5=f6d95fc4786d937e192d5d0daebbc96f&pid=1-s2.0-S2949866X2300120X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139015034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信