Erik Huemiller;Megan McGovern;Xinyu Du;James Salvador;Sean Wagner;William Collin
{"title":"Industrial EV Battery Performance Evaluation: A Review From the Instrumentation Perspective","authors":"Erik Huemiller;Megan McGovern;Xinyu Du;James Salvador;Sean Wagner;William Collin","doi":"10.1109/OJIM.2025.3544347","DOIUrl":"https://doi.org/10.1109/OJIM.2025.3544347","url":null,"abstract":"The increase in interest in lithium-ion battery cell performance indicators has been propelled by automotive manufacturers’ paradigm shift from internal combustion engine (ICE) vehicles toward electric vehicles (EVs). Accordingly, recent literature has seen a surge in the number of reviews related to nondestructive evaluation for lithium-ion batteries in EVs. Quantifying the battery cell performance is a key to successfully enabling the transition from ICE to EVs. This review seeks to provide an instrumentation and measurement perspective on the state of the art for battery cell performance indicators, including a deeper dive into their limitations and capabilities. This article will cover the most commonly employed measurement techniques, including electrical techniques, mechanical methods, and thermal analysis techniques. This article is organized by measurement technique, where each section will include an introduction to the technique, how it applies to batteries in the EV space, and will conclude with recommendations for extending the state of the art.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916802","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Selectivity Enhancement of Pesticide Biosensors via Polymer Coating","authors":"Angkana Phongphut;Seeroong Prichanont;Chanchana Thanachayanont;Hsin-Yi Tsai;Yu-Hsuan Lin;Keng-Ku Liu;Ruey-An Doong;Bralee Chayasombat","doi":"10.1109/OJIM.2025.3545978","DOIUrl":"https://doi.org/10.1109/OJIM.2025.3545978","url":null,"abstract":"This work investigated the effects of polymer films [chitosan (CS), Nafion (NF), and polyvinyl alcohol (PVA)] on the performances of acetylcholinesterase (AChE) biosensors for the selectivity of pesticide types and their concentration levels using principal component analysis (PCA). AChE was immobilized on montmorillonite/gold nanoparticles (Mt/AuNPs). The surface charge of the polymer films significantly influenced sensor performance: NF and PVA films, with negative charges, enhanced the preconcentration of positively charged acetylthiocholine chloride (ATCh), resulting in increased electroactive surface area and current response. In contrast, the positively charged CS film impeded mass diffusion of ATCh, reducing electroactive surface area and current response. Sensor/PVA showed the lowest limit of detection (LOD) for chlorpyrifos and pirimiphos-methyl, while Sensor/CS showed the lowest LOD for carbaryl. The unique response from three different biosensors demonstrated the successful discrimination of the pesticide group and their concentration levels by PCA. The total contribution variance was 99.8%. PC1 suggested the concentration levels, while PC2 was explicitly realized for organophosphate pesticides (negative PC2) and carbaryl (positive PC2). These findings demonstrate that the simple application of polymer coatings, combined with PCA, can significantly improve the selectivity and storage stability of AChE-based biosensors.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908626","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Accuracy Frequency Standard Comparison Technology Combining Adaptive Frequency and Lissajous Figure","authors":"Baoqiang Du;Yangfan Su;Zerui Yang","doi":"10.1109/OJIM.2025.3527536","DOIUrl":"https://doi.org/10.1109/OJIM.2025.3527536","url":null,"abstract":"To meet the requirements of high-precision measurement of time-frequency multiparameters, a high-accuracy frequency standard comparison technology combining adaptive frequency and Lissajous figure is proposed. This technology uses only one reference frequency source to realize the frequency standard comparison and frequency measurement between any frequency signals without frequency normalization. First, a new frequency standard comparison signal is obtained by using an adaptive frequency standard generation module to roughly measure the measured frequency. Second, the turning period is measured by observing the Lissajous figure. Third, via the turning period and the function relation of frequency deviation, the relative frequency difference between the measured and frequency standard signals can be obtained. Finally, the phase relation between the measured and frequency standard signals is determined by oscilloscope, and then the high-accuracy measurement of the measured frequency can be realized. The testing results indicate that the accuracy of the frequency measurement in the radiofrequency range can achieve the <inline-formula> <tex-math>$10^{-12}$ </tex-math></inline-formula> order of magnitude. Compared with the traditional frequency standard comparison technology, this technology has many characteristics, such as simple operation, low cost, low noise, and high measurement accuracy.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10883668","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microwave Reflectometry for Online Monitoring of Metal Powder Used in Laser Powder Bed Fusion Additive Manufacturing","authors":"Farzaneh Ahmadi;Reza Zoughi","doi":"10.1109/OJIM.2025.3540122","DOIUrl":"https://doi.org/10.1109/OJIM.2025.3540122","url":null,"abstract":"This study presents the results of using a millimeter-wave reflectometer system, operating at 150 GHz, for demonstrating the basic efficacy of measuring electromagnetic scattering of metal powder used in laser powder bed fusion (LPBF) additive manufacturing (AM). Metal spatter (spatial) properties—particles ejected during laser interaction with metal powder—are potential indicators of process deviations (from a prescribed manner) or defect formation in a printed part. Electromagnetic modeling of scattering properties of metal powder has shown to be a potentially viable tool for assessing metal powder cloud spatial distribution and other properties. This work takes the next natural step by measuring the scattering properties of a cloud of metal powder. This investigation begins with samples of stationary powder, demonstrating a strong correlation between packing density and the measured output voltage of the reflectometer. The study progresses into detecting the flow of relatively large metal particles (i.e., solder balls) in air and measuring responses of flowing metal powder blown inside a nitrogen-filled chamber. Results crucially confirm that this method can distinguish a cloud of metal powder from the baseline condition where no powder is present. While promising, this investigation represents an initial step in the long journey toward optimizing millimeter-wave methods for integration into real-world LPBF AM systems.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10879018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sensory Monitoring for Breakthrough Detection in Mobile Laser Cutting of Various Materials in the Context of Improvised Explosive Device Disposal","authors":"Emre Ünal;Matthias Muhr;Dominik Wild;Cathrin Theiss;Moritz Schumacher;Gerhard Holl;Peter Kaul","doi":"10.1109/OJIM.2025.3540127","DOIUrl":"https://doi.org/10.1109/OJIM.2025.3540127","url":null,"abstract":"Unattended luggage or containers in public areas, such as railway stations and buildings, like airports, may trigger bomb disposal operations. While these instances frequently involve harmless forgotten bags, they can also signal the presence of unconventional explosives and incendiary devices, which may include chemical, biological, radiological, nuclear, and explosive (CBRNe) elements. Research aspects of this work include the development of a mobile laser cutting system (LCS) to enhance the capabilities of police bomb disposal units in neutralizing improvised explosive devices (IEDs) and forensic evidence collection, thereby improving the safety of the public and defusing experts. This article presents the results of the development of a breakthrough detection system using an appropriate sensor technology. Parameters are determined by means of sensory monitoring to cut through various materials without interacting with the layer behind them. The investigation includes real cutting tests with the mobile LCS on various materials. For example, breakthrough times for polystyrene ranged from 75 to 250 s depending on geometry, while sensor accuracy in detecting cutting progress exceeded 90%. Additionally, explosive residues as low as 10 ng were successfully detected post-cutting, highlighting the system’s forensic compatibility. The results show that sensor-based breakthrough detection is feasible for the laser cutting of IED-relevant objects.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10879072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"OJIM 2024 Reviewer List","authors":"reviewers","doi":"10.1109/OJIM.2025.3531742","DOIUrl":"https://doi.org/10.1109/OJIM.2025.3531742","url":null,"abstract":"","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10877683","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2024 Index IEEE Open Journal of Instrumentation and Measurement Vol. 3","authors":"","doi":"10.1109/OJIM.2025.3530263","DOIUrl":"https://doi.org/10.1109/OJIM.2025.3530263","url":null,"abstract":"","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"3 ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843336","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrahigh-Performance Radio Frequency System-on-Chip Implementation of a Kalman Filter-Based High-Precision Time and Frequency Synchronization for Networked Integrated Sensing and Communication Systems","authors":"Roghayeh Ghasemi;Patrick Fenske;Tobias Koegel;Markus Hehn;Ingrid Ullmann;Martin Vossiek","doi":"10.1109/OJIM.2025.3527532","DOIUrl":"https://doi.org/10.1109/OJIM.2025.3527532","url":null,"abstract":"The integration of radar sensing and imaging capabilities into future integrated sensing and communication (ISAC) networks enables advanced use cases, including autonomous vehicle navigation, real-time health monitoring, and smart city management. However, ultraprecise time and frequency synchronization is crucial for unlocking the full potential of such networked ISAC systems. In this article, a novel real-time wireless time and frequency synchronization scheme is developed and fully implemented on a high-end radio frequency system-on-chip field-programmable gate array (FPGA) platform. The excellent performance and robustness of the proposed solution in practical applications are demonstrated. It is evidenced that the recursive nature of the Kalman filter is well suited to the dynamic capabilities of FPGA-based simultaneous synchronization. Observed values obtained through the precision time protocol (PTP) are iteratively refined, thus effectively compensating for uncertainties encountered during a synchronization packet exchange. Due to the deterministic processing time inherent in the FPGA, the proposed synchronization method achieves exceptional precision, with clock offset deviations in the nanosecond range and clock rate deviations limited to only a few parts per billion, even across considerable distances between the network nodes.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835166","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jose Moreira;Athanasios Papanikolaou;Jan Hesselbarth
{"title":"High-Volume OTA Production Testing of Millimeter-Wave Antenna-in-Package Modules","authors":"Jose Moreira;Athanasios Papanikolaou;Jan Hesselbarth","doi":"10.1109/OJIM.2025.3527529","DOIUrl":"https://doi.org/10.1109/OJIM.2025.3527529","url":null,"abstract":"This article discusses challenges and methods for production-level over-the-air (OTA) test of antenna-in-package (AiP) modules comprising antenna arrays operating at millimeter-wave frequencies. Starting with the requirements of testing specific properties of AiP modules, characteristics of far-field tests as well as different kinds of near-field tests are presented. Considering the constraints of typical automatic test equipment (ATE) used by the semiconductor industry, this article describes technical solutions for the integration of OTA testing into the ATE environment. Practical examples are discussed for testing AiP modules for 5G communication (frequency bands from 24 to 53 GHz). Limitations of the proposed techniques are detailed, and in view of future requirements for testing larger arrays at higher frequency, novel scalable approaches are presented for probing in the reactive near-field of the antenna array radiators.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835189","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Passive WiFi Device Localization Through Packet Timing Analysis","authors":"Omar Dhawahir;Murat Torlak","doi":"10.1109/OJIM.2024.3522345","DOIUrl":"https://doi.org/10.1109/OJIM.2024.3522345","url":null,"abstract":"This article presents an innovative timing-based localization method aimed at determining the positions of active WiFi devices through passive reception. The method involves capturing and analyzing the timing of over-the-air WiFi packets: request-to-send (RTS), clear-to-send (CTS), data (DATA), and acknowledgment (ACK) packets exchanged between WiFi routers and clients. The accuracy of round-trip time (RTT) estimation, crucial for distance calculation, can be affected by factors, such as clock variations between devices and, notably, the short interframe space (SIFS) time setting in the WiFi protocol. Despite SIFS time aiming to ensure a consistent interval between DATA and ACK frame transmissions, IEEE 802.11 standards permit up to a 10% variation in SIFS time. When combined with device-level disparities and environmental fluctuations, individual RTT measurements may not reliably estimate distances. In this study, we employ statistical clustering techniques, specifically k-means clustering, to enhance RTT estimation by refining coarse- and fine-timing estimates. Each captured packet pair, i.e., (DATA/ACK), is assigned to the cluster with the most similar coarse and fine RTT characteristics. Subsequently, the properties of the identified cluster (e.g., coarse RTT/fine RTT) are utilized as a more precise RTT estimate for localization computations. Simulations and experiments conducted under diverse multipath conditions demonstrate the algorithm’s accuracy in 2-D positioning, achieving an average accuracy of as low as 0.24 m in simulations and 1.18 m in experiments when the Wi-Fi router and device are separated by distances of up to 18 m. The proposed method offers a robust approach for accurate passive Wi-Fi positioning, highlighting its potential for real-world applications.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}