Chemosensors最新文献

筛选
英文 中文
Investigation of WO3 and BiVO4 Photoanodes for Photoelectrochemical Sensing of Xylene, Toluene and Methanol WO3和BiVO4光阳极用于二甲苯、甲苯和甲醇光电传感的研究
3区 工程技术
Chemosensors Pub Date : 2023-11-01 DOI: 10.3390/chemosensors11110552
Milda Petruleviciene, Irena Savickaja, Jurga Juodkazyte, Arunas Ramanavicius
{"title":"Investigation of WO3 and BiVO4 Photoanodes for Photoelectrochemical Sensing of Xylene, Toluene and Methanol","authors":"Milda Petruleviciene, Irena Savickaja, Jurga Juodkazyte, Arunas Ramanavicius","doi":"10.3390/chemosensors11110552","DOIUrl":"https://doi.org/10.3390/chemosensors11110552","url":null,"abstract":"Volatile organic compounds (VOCs) are a notable group of indoor air pollutants released by household products. These substances are commonly employed as solvents in industrial operations, and some of them are recognized or suspected to be cancer-causing or mutagenic agents. Due to their high volatility, VOCs are typically present in surface waters at concentrations below a few micrograms per liter. However, in groundwater, their concentrations can reach levels up to thousands of times higher. This study analyses the applicability of the photoelectrochemical (PEC) sensing of VOCs in aqueous medium. Tungsten oxide and bismuth vanadate photoanodes were tested for PEC sensing of xylene, toluene, and methanol in sodium chloride and sodium sulfate electrolytes. The crystalline structure and morphology of coatings were analyzed using XRD and SEM analyses. Photoelectrochemical properties were evaluated using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The results of the study show that aromatic compounds tend to block the surface of the photoelectrode and interfere with the PEC sensing of other substances. WO3 photoanode is found to be suitable for the PEC sensing of methanol under the mild conditions in aqueous electrolytes; however, electrode engineering and assay optimization are required to achieve better detection limits.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135326009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modifying Headspace Sampling Environment Improves Detection of Boar Taint Compounds in Pork Fat Samples 改进顶空取样环境可提高猪油样品中猪味化合物的检测效果
3区 工程技术
Chemosensors Pub Date : 2023-10-28 DOI: 10.3390/chemosensors11110551
Clément Burgeon, Alice Markey, Yves Brostaux, Marie-Laure Fauconnier
{"title":"Modifying Headspace Sampling Environment Improves Detection of Boar Taint Compounds in Pork Fat Samples","authors":"Clément Burgeon, Alice Markey, Yves Brostaux, Marie-Laure Fauconnier","doi":"10.3390/chemosensors11110551","DOIUrl":"https://doi.org/10.3390/chemosensors11110551","url":null,"abstract":"The extraction of boar taint compounds from pork fat samples was performed under various temperature (150, 300 and 450 °C) and atmosphere (air, nitrogen and reduced pressure) conditions. This aimed at understanding which conditions allow the greatest extractions of indole, skatole and androstenone (present in backfat in low concentrations) while limiting the presence of other VOCs in the headspace of heated fat (interfering with correct VOC-based detection of boar taint compounds). Indole and skatole were extracted in the greatest concentrations when heating backfat at 450 °C under reduced pressure, while androstenone was highest when heating at 300 °C under reduced pressure. Oxidation products were most abundant under air conditions, nitrogenated products appeared in the presence of a nitrogen-enriched atmosphere, and lastly, molecules intrinsic to boar fat saw their headspace concentration increase with reduced pressure. The combination of 450 °C and reduced pressure atmosphere was suggested for the heating of backfat prior to detection with analytical methods and to complement the current sensory analysis.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136232176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Molecularly Imprinted Polypyrrole-Based Sensor for the Detection of Methylene Blue 基于分子印迹聚吡咯的亚甲基蓝检测传感器的研究
3区 工程技术
Chemosensors Pub Date : 2023-10-26 DOI: 10.3390/chemosensors11110549
Raimonda Boguzaite, Greta Pilvenyte, Vilma Ratautaite, Ernestas Brazys, Almira Ramanaviciene, Arunas Ramanavicius
{"title":"Towards Molecularly Imprinted Polypyrrole-Based Sensor for the Detection of Methylene Blue","authors":"Raimonda Boguzaite, Greta Pilvenyte, Vilma Ratautaite, Ernestas Brazys, Almira Ramanaviciene, Arunas Ramanavicius","doi":"10.3390/chemosensors11110549","DOIUrl":"https://doi.org/10.3390/chemosensors11110549","url":null,"abstract":"This study is dedicated to molecularly imprinted polymer-based sensor development for methylene blue detection. The sensor was designed by molecular imprinting of polypyrrole with phenothiazine derivative methylene blue (MB) as a template molecule. The molecularly imprinted polymer (MIP) was deposited directly on the surface of the indium tin oxide-coated glass electrode by potential cycling. Different deposition conditions, the layer’s durability, and thickness impact were analysed. The working electrodes were coated with molecularly imprinted and non-imprinted polymer layers. Potential pulse chronoamperometry and cyclic voltammetry were used to study these layers. Scanning electron microscopy was used to determine the surface morphology of the polymer layers. The change in optical absorption was used as an analytical tool to evaluate the capability of the MIP layer to adsorb MB. Selectivity was monitored by tracking the optical absorption changes in the presence of Azure A. In the case of MB adsorption, linearity was observed at all evaluated calibration plots in the concentration range from 0.1 μM to 10 mM. The novelty of this article is based on the methodology in the fabrication process of the sensors for MB, where MB retains its native (non-polymerised) form during the deposition of the MIP composite.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136377261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pd-Nanoparticle-Decorated Multilayered MoS2 Sheets for Highly Sensitive Hydrogen Sensing 用于高灵敏度氢传感的pd -纳米粒子修饰多层MoS2片
3区 工程技术
Chemosensors Pub Date : 2023-10-26 DOI: 10.3390/chemosensors11110550
Shuja Bashir Malik, Fatima Ezahra Annanouch, Eduard Llobet
{"title":"Pd-Nanoparticle-Decorated Multilayered MoS2 Sheets for Highly Sensitive Hydrogen Sensing","authors":"Shuja Bashir Malik, Fatima Ezahra Annanouch, Eduard Llobet","doi":"10.3390/chemosensors11110550","DOIUrl":"https://doi.org/10.3390/chemosensors11110550","url":null,"abstract":"In this work, efficient hydrogen gas sensors based on multilayered p-type bare MoS2 and Pd-decorated MoS2 were fabricated. MoS2 was deposited onto alumina transducers using an airbrushing technique to be used as a sensing material. Aerosol-assisted chemical vapor deposition (AACVD) was used to decorate layered MoS2 with Pd nanoparticles at 250 °C. The bare and Pd-decorated MoS2 was characterized using field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), and Raman spectroscopy. The characterization results reveal the multilayered crystalline structure of MoS2 with successful Pd decoration. The size of the Pd nanoparticles ranges from 15 nm to 23 nm. Gas sensing studies reveal that a maximum response of 55% is achieved for Pd-decorated MoS2 operated at 150 °C to 100 ppm of H2, which is clearly below the explosive limit (4%) in air. The higher sensitivity due to Pd nanoparticle decoration was owed to a spillover effect. This study reveals that the sensitivity of the sensors is highly dependent on the amount of Pd decoration. Moreover, sensor responses increase slightly when exposed to 50% relative humidity (RH at 25 °C).","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134906684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon Electrode Modified with Molecularly Imprinted Polymers for the Development of Electrochemical Sensor: Application to Pharmacy, Food Safety, Environmental Monitoring, and Biomedical Analysis 分子印迹聚合物修饰碳电极用于电化学传感器的开发:在制药、食品安全、环境监测和生物医学分析中的应用
3区 工程技术
Chemosensors Pub Date : 2023-10-24 DOI: 10.3390/chemosensors11110548
Elias Bou-Maroun
{"title":"Carbon Electrode Modified with Molecularly Imprinted Polymers for the Development of Electrochemical Sensor: Application to Pharmacy, Food Safety, Environmental Monitoring, and Biomedical Analysis","authors":"Elias Bou-Maroun","doi":"10.3390/chemosensors11110548","DOIUrl":"https://doi.org/10.3390/chemosensors11110548","url":null,"abstract":"This review aims to elucidate recent developments in electrochemical sensors that use functionalized carbon electrodes with molecularly imprinted polymers (MIPs) for the selective detection of organic compounds in diverse fields including pharmacy, food safety, environmental monitoring of pollutants, and biomedical analysis. The main targets include explosive compounds, dyes, antioxidants, disease biomarkers, pharmaceuticals, antibiotics, allergens, pesticides, and viruses. Following a brief overview of the molecular imprinting principle, the most significant applications are explored. The selection of the functional monomer is subsequently discussed. Notably, various types of carbon electrodes are presented, with a particular emphasis on screen-printed carbon electrodes. The most commonly employed techniques for MIP deposition such as electropolymerization, drop casting, and chemical grafting are introduced and discussed. Electrochemical transduction techniques like cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy are presented. Lastly, the review concludes by examining potential future directions and primary limitations concerning carbon electrodes modified with MIPs.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135266186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contamination- and Perturbation-Free Fluorescent Monitoring of Zn2+ in Suspensions using Crown Ether-Functionalized Magnetic Nanoparticles 冠醚功能化磁性纳米颗粒对悬浮液中Zn2+的无污染和无扰动荧光监测
3区 工程技术
Chemosensors Pub Date : 2023-10-22 DOI: 10.3390/chemosensors11100547
Panna Vezse, Ádám Golcs, Tünde Tóth, Péter Huszthy
{"title":"Contamination- and Perturbation-Free Fluorescent Monitoring of Zn2+ in Suspensions using Crown Ether-Functionalized Magnetic Nanoparticles","authors":"Panna Vezse, Ádám Golcs, Tünde Tóth, Péter Huszthy","doi":"10.3390/chemosensors11100547","DOIUrl":"https://doi.org/10.3390/chemosensors11100547","url":null,"abstract":"This study aims to introduce a fluorescence-based chemosensing method for Zn2+ in aqueous suspensions and untreated surface waters, conditions which generally hinder the application of conventional optochemical sensing platforms. A macrocyclic fluoroionophore was covalently bonded to a silica-coated magnetic nanoparticle and applied according to a predetermined protocol for analyzing trace amounts of Zn2+ under rarely investigated conditions. Utilizing the reversible complexation of the immobilized fluoroionophore, rapid regeneration was carried out via simple acidification after the magnetic-assisted solid-phase extraction of the particles. Forming inclusion complexes with Zn2+ with the receptor units of the particles leads to a significant enhancement in fluorescence intensity at 370 nm, above the detection limit of 5 ppb, with a dynamic linear range of quantification of 15–3000 ppb in a pH range of 5.5–7.5. Practical applicability was confirmed by analyzing untreated river water and an aqueous suspension of pumpkin seed flour as real and relevant heterogeneous multicomponent samples of predetermined sample composition and natural Zn2+ content. Our practical approach aims to broaden the applicability range of optochemical sensing platforms for Zn2+.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135461246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical vs. Optical Biosensors for Point-of-Care Applications: A Critical Review 电化学与光学生物传感器在护理点的应用:一个关键的评论
3区 工程技术
Chemosensors Pub Date : 2023-10-21 DOI: 10.3390/chemosensors11100546
Seyedeh Rojin Shariati Pour, Donato Calabria, Afsaneh Emamiamin, Elisa Lazzarini, Andrea Pace, Massimo Guardigli, Martina Zangheri, Mara Mirasoli
{"title":"Electrochemical vs. Optical Biosensors for Point-of-Care Applications: A Critical Review","authors":"Seyedeh Rojin Shariati Pour, Donato Calabria, Afsaneh Emamiamin, Elisa Lazzarini, Andrea Pace, Massimo Guardigli, Martina Zangheri, Mara Mirasoli","doi":"10.3390/chemosensors11100546","DOIUrl":"https://doi.org/10.3390/chemosensors11100546","url":null,"abstract":"Analytical chemistry applied to medical and diagnostic analysis has recently focused on the development of cost-effective biosensors able to monitor the health status or to assess the level of specific biomarkers that can be indicative of several diseases. The improvement of technologies relating to the possibility of the non-invasive sampling of biological fluids, as well as sensors for the detection of analytical signals and the computational capabilities of the systems routinely employed in everyday life (e.g., smartphones, computers, etc.), makes the complete integration of self-standing analytical devices more accessible. This review aims to discuss the biosensors that have been proposed in the last five years focusing on two principal detecting approaches, optical and electrochemical, which have been employed for quantifying different kinds of target analytes reaching detection limits below the clinical sample levels required. These detection principles applied to point-of-care (POC) devices have been extensively reported in literature, and even the limited examples found on the market are based on these strategies. This work will show the latest innovations considering the integration of optical and electrochemical detection with the most commonly reported analytical platforms for POC applications such as paper-based or wearable and implantable devices.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135511539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Solid-Phase Extraction Followed by Gas Chromatography–Mass Spectrometry for Revealing the Effects of the Application of Bentonite, Tannins, and Their Combination during Fermentation in the Production of White Wine 固相萃取-气相色谱-质谱联用研究膨润土、单宁及其组合在白葡萄酒发酵过程中的应用效果
3区 工程技术
Chemosensors Pub Date : 2023-10-21 DOI: 10.3390/chemosensors11100545
Igor Lukić, Ivana Horvat, Sanja Radeka, Urska Vrhovsek
{"title":"Solid-Phase Extraction Followed by Gas Chromatography–Mass Spectrometry for Revealing the Effects of the Application of Bentonite, Tannins, and Their Combination during Fermentation in the Production of White Wine","authors":"Igor Lukić, Ivana Horvat, Sanja Radeka, Urska Vrhovsek","doi":"10.3390/chemosensors11100545","DOIUrl":"https://doi.org/10.3390/chemosensors11100545","url":null,"abstract":"To investigate the effects of the application of bentonite, tannins, and their combination in alcoholic fermentation, Malvazija istarska (Vitis vinifera L.) white grape must was treated with 95 g/L of bentonite, 25 g/L of a hydrolysable tannin preparation, while the third treatment received the aforementioned doses of both agents. Control grape must was fermented without bentonite and exogenous tannins. All of the produced wines were additionally fined after fermentation with doses of bentonite needed to achieve complete protein stability. Wines were analyzed both after fermentation and after additional bentonite fining. Standard physicochemical parameters were determined by the OIV methods, and phenols were analyzed by high-performance liquid chromatography with diode-array detection (HPLC-DAD), while the concentrations of free and bound volatile aroma compounds were obtained after solid-phase extraction (SPE) followed by gas chromatography–mass spectrometry (GC-MS). Bentonite and tannins in fermentation generally reduced the total dose of bentonite needed for complete stabilization. Treatments with bentonite slightly decreased the concentration of total dry extract, while tannins preserved total acidity. The negative effect of bentonite on flavonoids was more severe. Tannins in fermentation preserved more hydroxycinnamoyltartaric acids with respect to control wine, and this effect was additionally enhanced by bentonite. Volatile and bound aroma composition was affected by all the treatments, while the addition of tannins resulted in higher concentrations of several important odoriferous esters, such as ethyl hexanoate, ethyl decanoate, and hexyl acetate. Additional fining with bentonite to complete protein stabilization annulled some of the positive effects observed after fermentation.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135511840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signal Amplification for Detection of Nilutamide in Three-Dimensional Electrochemical Sensor Using Copper Metal–Organic Framework Decorated Carbon Nanofibers 铜金属-有机骨架修饰纳米碳纤维在三维电化学传感器中检测尼鲁胺的信号放大研究
3区 工程技术
Chemosensors Pub Date : 2023-10-20 DOI: 10.3390/chemosensors11100544
Elaiyappillai Elanthamilan, Sea-Fue Wang
{"title":"Signal Amplification for Detection of Nilutamide in Three-Dimensional Electrochemical Sensor Using Copper Metal–Organic Framework Decorated Carbon Nanofibers","authors":"Elaiyappillai Elanthamilan, Sea-Fue Wang","doi":"10.3390/chemosensors11100544","DOIUrl":"https://doi.org/10.3390/chemosensors11100544","url":null,"abstract":"The extensive use of antibiotics has rapidly spread antibiotic resistance, which poses significant health risks to humans. Unfortunately, despite this pressing issue, there is still a lack of a reliable on-site detection method for the residues of antibiotics, such as nilutamide (Nlu). Consequently, there is an urgent need to develop and perfect such a detection method to effectively monitor and control antibiotic residues. In this study, the hydrothermal development of copper-metal-organic framework (Cu-MOF) polyhedrons on the functionalized carbon nanofiber (f-CNF) matrix allowed for the detection of Nlu in biological liquids via a sensitive amperometry technique. Further electrochemical detection of Nlu took place with the cyclic voltammetry (CV) technique Cu-MOF/f-CNF. Analytical and spectroscopic approaches were used to confirm the successful synthesis of Cu-MOF/f-CNF. The prepared material was decorated on the surface of GCE and performed as an electrochemical Nlu sensor, with a broad linear range of 0.01 to 141.4 μM and 2 nM as a lower limit of detection. In addition, the composites had a large surface area and many dedicated sites, which improved electrocatalysis. In practical applications, Cu-MOF/f-CNF/GCE provides a novel strategy for improving electrochemical activity by measuring Nlu concentrations in biological samples.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135617720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Method Comparison for the Identification and Characterization of Odorants from Scots Pine (Pinus sylvestris L.) and Oriented Strand Boards (OSB) Made Thereof by GC-MS and GC-FID/O Using Different Headspace Techniques 方法采用不同顶空技术,采用GC-MS和GC-FID/O对苏格兰松(Pinus sylvestris L.)及其定向刨花板(OSB)气味的鉴别和表征进行比较
3区 工程技术
Chemosensors Pub Date : 2023-10-19 DOI: 10.3390/chemosensors11100543
Valentin Schierer, Cornelia Rieder-Gradinger, Erwin Rosenberg
{"title":"Method Comparison for the Identification and Characterization of Odorants from Scots Pine (Pinus sylvestris L.) and Oriented Strand Boards (OSB) Made Thereof by GC-MS and GC-FID/O Using Different Headspace Techniques","authors":"Valentin Schierer, Cornelia Rieder-Gradinger, Erwin Rosenberg","doi":"10.3390/chemosensors11100543","DOIUrl":"https://doi.org/10.3390/chemosensors11100543","url":null,"abstract":"Volatile organic compounds (VOCs) from wood and wood composites are important contributors to odor profiles of indoor environments and can significantly influence human health and well-being. GC-MS/FID and gas chromatography (GC) with olfactometric detection (GC-O) are employed for the identification and characterization of odorants. Four different sample preparation methods are evaluated on wood strands and isocyanate adhesive–based oriented strand boards (OSBs) made from Pinus sylvestris L.: among these, dynamic headspace extraction thermal desorption ((dynamic) HS-TD), head space solid phase microextraction (HS-SPME), head space solid phase microextraction Arrow (HS-SPME Arrow), and liquid injection of a CH2Cl2 solvent extract. The olfactometric investigation revealed over 30 odor-active substances of cyclic and acyclic monoterpene, monoterpenoid ketone, monoterpenoid aldehyde, monoterpenoid alcohol, monoterpenoid ester, aliphatic aldehyde, alcohol, and acid and phenolic chemistry. Compared to liquid injection, (dynamic) HS-TD was found to result in a similar number of odorants (20 vs. 24), whereas HS SPME Arrow shows good performance with minimal instrumental effort, notably for monoterpene and aldehyde compounds. Native wood vs. OSB showed high concentrations of saturated and unsaturated aldehydes for the wood board sample. These findings demonstrate the capability of headspace methods for odorant detection and their suitability for standardization towards a database for wood and wood composites.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135730525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信