{"title":"Near Valuations","authors":"Niel Shell","doi":"10.1201/9781003066743-23","DOIUrl":"https://doi.org/10.1201/9781003066743-23","url":null,"abstract":"","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74566288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover-close topologies for function spaces","authors":"Anthony Irudayanathan","doi":"10.1016/0016-660X(79)90039-4","DOIUrl":"10.1016/0016-660X(79)90039-4","url":null,"abstract":"","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 3","pages":"Pages 275-281"},"PeriodicalIF":0.0,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90039-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74653921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultraproducts in topology","authors":"Paul Bankston","doi":"10.1016/0016-660X(79)90035-7","DOIUrl":"https://doi.org/10.1016/0016-660X(79)90035-7","url":null,"abstract":"","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89924753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On θ-refinability of strict p-spaces","authors":"Józef Chaber, Heikki Junnila","doi":"10.1016/0016-660X(79)90036-9","DOIUrl":"10.1016/0016-660X(79)90036-9","url":null,"abstract":"<div><p>In this paper, some partial solutions are given to the problem concerning <em>θ</em>-refinability of strict <em>p</em>-spaces. It is shown that every locally compact strict <em>p</em>-space is <em>θ</em>-refinable and every locally hereditarily separable strict <em>p</em>-space is subparacompact.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 3","pages":"Pages 233-238"},"PeriodicalIF":0.0,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90036-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84973445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fully closed maps, scannable spectra and cardinality of hereditarily separable spaces","authors":"V.V. Fedorčuk","doi":"10.1016/0016-660X(79)90038-2","DOIUrl":"10.1016/0016-660X(79)90038-2","url":null,"abstract":"<div><p>In this paper we study the notions of scannable spectrum and roll of a spectral tree, which appeared in slightly different form in [3] and [5] respectively. One of the main results: scannable spectra necessarily have fully closed projections and spectra of length ⩽ω with fully closed projections are scannable. The technique of scannable spectra is used, when we study the new class of fully separable spaces. We prove that the statement - every fully separable almost perfectly normal compact space has cardinality ⩽<strong>c</strong>-is independent of ZFC.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 3","pages":"Pages 247-274"},"PeriodicalIF":0.0,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90038-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82766182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A decomposition of En (n≥3) into points and a null sequence of cellular sets","authors":"David G. Wright","doi":"10.1016/0016-660X(79)90042-4","DOIUrl":"10.1016/0016-660X(79)90042-4","url":null,"abstract":"<div><p>The non-manifold dog bone space of W.T. Eaton is modified to obtain a decomposition of Euclidean <em>n</em>-space, <em>n</em>≥3, into points and a null sequence of cellular sets so that the resulting decomposition space is not a manifold. Our construction follows a procedure given by R.J. Daverman who has proved this result for <em>n</em>≥5. Our construction has the advantage of working in all possible dimensions including the previously unknown dimension 4.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 3","pages":"Pages 297-304"},"PeriodicalIF":0.0,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90042-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85456115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A cyclic connectivity theorem for hyperspaces","authors":"L.E. Ward Jr.","doi":"10.1016/0016-660X(79)90041-2","DOIUrl":"10.1016/0016-660X(79)90041-2","url":null,"abstract":"<div><p>It is proved that if <em>X</em> is a (metric) continuum, if <em>C</em>(<em>X</em>) is the space of nonempty closed connected subsets of <em>X</em> with the Hausdorff metric, and if <em>A</em><sub>1</sub>,…,<em>A</em><sub><em>n</em></sub> are members of <em>C</em>(<em>X</em>) such that each of the sets <em>C</em>(<em>X</em>)-{<em>A<sub>i</sub></em>} is arcwise connected, then <em>C</em>(<em>X</em>)-{<em>A</em><sub>1</sub>,…,<em>A<sub>n</sub></em>} is arcwise connected.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 3","pages":"Pages 291-295"},"PeriodicalIF":0.0,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90041-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81863929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On universal metric locally finite dimensional spaces","authors":"Leonid Luxemburg","doi":"10.1016/0016-660X(79)90040-0","DOIUrl":"10.1016/0016-660X(79)90040-0","url":null,"abstract":"<div><p>In this paper we prove the existence of a universal element in the class of locally-finite dimensional metric spaces with weight τ. We also show that every locally finite dimensional metric space has uniformly zero-dimensional continuous mapping in a locally compact locally finite dimensional separable metric space.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 3","pages":"Pages 283-290"},"PeriodicalIF":0.0,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90040-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82744191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topological partitions","authors":"Paul Bankston, Richard J. McGovern","doi":"10.1016/0016-660X(79)90034-5","DOIUrl":"https://doi.org/10.1016/0016-660X(79)90034-5","url":null,"abstract":"<div><p>A space <em>X partitions</em> a space <em>Y</em> if <em>Y</em> is the union of pairwise disjoint subjets, each of which is homeomorphic to <em>X</em>. We study the topological partition relation, particularly in the context of separable metric spaces, obtaining topological analogues to well-known problems in the theory of geometric partitions.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 3","pages":"Pages 215-229"},"PeriodicalIF":0.0,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90034-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92127204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}