遗传可分空间的全闭映射、可扫描谱和基数

V.V. Fedorčuk
{"title":"遗传可分空间的全闭映射、可扫描谱和基数","authors":"V.V. Fedorčuk","doi":"10.1016/0016-660X(79)90038-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the notions of scannable spectrum and roll of a spectral tree, which appeared in slightly different form in [3] and [5] respectively. One of the main results: scannable spectra necessarily have fully closed projections and spectra of length ⩽ω with fully closed projections are scannable. The technique of scannable spectra is used, when we study the new class of fully separable spaces. We prove that the statement - every fully separable almost perfectly normal compact space has cardinality ⩽<strong>c</strong>-is independent of ZFC.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 3","pages":"Pages 247-274"},"PeriodicalIF":0.0000,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90038-2","citationCount":"16","resultStr":"{\"title\":\"Fully closed maps, scannable spectra and cardinality of hereditarily separable spaces\",\"authors\":\"V.V. Fedorčuk\",\"doi\":\"10.1016/0016-660X(79)90038-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study the notions of scannable spectrum and roll of a spectral tree, which appeared in slightly different form in [3] and [5] respectively. One of the main results: scannable spectra necessarily have fully closed projections and spectra of length ⩽ω with fully closed projections are scannable. The technique of scannable spectra is used, when we study the new class of fully separable spaces. We prove that the statement - every fully separable almost perfectly normal compact space has cardinality ⩽<strong>c</strong>-is independent of ZFC.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"10 3\",\"pages\":\"Pages 247-274\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(79)90038-2\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X79900382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X79900382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文研究了可扫描谱和谱树卷的概念,它们在[3]和[5]中分别以略有不同的形式出现。主要结论之一是:可扫描谱必须具有全封闭投影,且长度为≥ω且具有全封闭投影的谱是可扫描的。在研究一类新的完全可分离空间时,采用了可扫描谱技术。证明了命题-每一个完全可分的几乎完全正规紧空间的基数≤c-与ZFC无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully closed maps, scannable spectra and cardinality of hereditarily separable spaces

In this paper we study the notions of scannable spectrum and roll of a spectral tree, which appeared in slightly different form in [3] and [5] respectively. One of the main results: scannable spectra necessarily have fully closed projections and spectra of length ⩽ω with fully closed projections are scannable. The technique of scannable spectra is used, when we study the new class of fully separable spaces. We prove that the statement - every fully separable almost perfectly normal compact space has cardinality ⩽c-is independent of ZFC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信