{"title":"A review of biochar functionalized by thermal air oxidation","authors":"Feng Xiao","doi":"10.1016/j.efmat.2022.03.001","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.03.001","url":null,"abstract":"","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75333243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Is g-C3N4 more suitable for photocatalytic reduction or oxidation in environmental applications?","authors":"Qiaohong Zhu, Jinlong Zhang","doi":"10.1016/j.efmat.2022.05.003","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.05.003","url":null,"abstract":"","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75410013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yufei Zhou, Kun Zhao, Md Al Amin, Cheng Fang, Zhongyu Guo, C. Yoshimura, Junfeng Niu
{"title":"Elucidating the role of phosphorus doping in Co and Ni-loaded carbon nitride photocatalysts for nefazodone degradation","authors":"Yufei Zhou, Kun Zhao, Md Al Amin, Cheng Fang, Zhongyu Guo, C. Yoshimura, Junfeng Niu","doi":"10.1016/j.efmat.2022.05.001","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.05.001","url":null,"abstract":"","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"2016 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86146886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yifan Ren, Wentian Zheng, Xiaoguang Duan, N. Goswami, Yanbiao Liu
{"title":"Recent Advances in Electrochemical Removal and Recovery of Phosphorus from Water: a Review","authors":"Yifan Ren, Wentian Zheng, Xiaoguang Duan, N. Goswami, Yanbiao Liu","doi":"10.1016/j.efmat.2022.04.003","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.04.003","url":null,"abstract":"","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"113 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73209099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Persulfate-based advanced oxidation processes: The new hope brought by nanocatalyst immobilization","authors":"Ruonan Guo , Beidou Xi , Changsheng Guo , Xiuwen Cheng , Ningqing Lv , Wen Liu , Alistair G.L. Borthwick , Jian Xu","doi":"10.1016/j.efmat.2022.05.004","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.05.004","url":null,"abstract":"<div><p>Persulfate-based advanced oxidation processes (persulfate-AOPs) offer great promise for environmental remediation, with heterogeneous catalysts providing the backbone of many wastewater purification technologies. Unlike conventional nanocatalyst heterogeneous systems, the immobilized-catalyst system can bypass the separation problem to reduce scour and prevent aggregation by anchoring nanoparticles onto porous or large-particle carriers. This review presents the state-of-the-art of knowledge concerning immobilization methodologies and reactors, reaction mechanisms, and activation performance. Immobilization techniques onto supports are summarized and discussed, including membrane-based reaction systems (immersion mode, and filtration mode), electrocatalytic auxiliary systems, and alternative supports (metallic glasses, aerogels, hydrogels, and specific materials). Key scientific problems and important prospects for the further development of immobilized catalysts are outlined.</p></div>","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"1 1","pages":"Pages 67-91"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773058122000084/pdfft?md5=4b248eac3954866aed80c0497bc1604c&pid=1-s2.0-S2773058122000084-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71900089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhijie Chen , Wenfei Wei , Bing-Jie Ni , Hong Chen
{"title":"Plastic wastes derived carbon materials for green energy and sustainable environmental applications","authors":"Zhijie Chen , Wenfei Wei , Bing-Jie Ni , Hong Chen","doi":"10.1016/j.efmat.2022.05.005","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.05.005","url":null,"abstract":"<div><p>Plastic waste has become a serious environmental issue and has attracted increasing attention. Various treatment technologies have been developed for the remediation of this waste, including degradation, recycling and upcycling, and transformation to value-added products has been extensively studied. Transitioning plastic waste into carbon-based functional materials is especially attractive because of the practical applications of plastic wastes derived carbon materials (PWCMs) in the field of green energy and in sustainable environmental practices. Herein, recent advances in the preparation and applications of PWCMs are systematically reviewed. Thermal treatment methods for synthesizing carbon-based materials from plastic waste are summarized, including anoxic pyrolysis, catalytic and pressure carbonization techniques, flash Joule heating and microwave conversion. The applications of PWCMs and PWCMs-based composites to green energy storage and production (such as in batteries, supercapacitors and water-splitting systems) and sustainable environmental concepts (pollutant adsorption/degradation, solar evaporation and CO<sub>2</sub> capture) are detailed, with an emphasis on the property-performance correlation. The potential for future development of PWCMs is also examined. This review is meant to provide insights into the advanced applications of PWCMs and to stimulate the future upcycling of plastic waste.</p></div>","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"1 1","pages":"Pages 34-48"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773058122000096/pdfft?md5=443237b2b5a1994ed0da13e1bad5516e&pid=1-s2.0-S2773058122000096-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71900097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongyu Zhou , Zhihui Xie , Yunmei Liu , Bo Lai , Wee-Jun Ong , Shaobin Wang , Xiaoguang Duan
{"title":"Recent advances in molybdenum disulfide-based advanced oxidation processes","authors":"Hongyu Zhou , Zhihui Xie , Yunmei Liu , Bo Lai , Wee-Jun Ong , Shaobin Wang , Xiaoguang Duan","doi":"10.1016/j.efmat.2022.04.001","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.04.001","url":null,"abstract":"<div><p>Molybdenum disulfide (MoS<sub>2</sub>) is an emerging class of heterogeneous catalyst in advanced oxidation processes (AOPs). Featuring a two-dimensional structure, good conductivity, photo-response, reductive capacity, and regulatable active sites, MoS<sub>2</sub> fulfills versatile functions in various AOPs systems, such as direct activation of peroxide, serving as a co-catalyst in Fe<sup>3+</sup>- and Cu<sup>2+</sup>-based Fenton/Fenton-like systems, photocatalytic oxidation, electrochemical oxidation, and piezoelectric oxidation. In this review, we summarize recent advances of MoS<sub>2</sub> in the AOPs applications. We systematically compare the dominant reactive oxygen species, and identify potential active sites (e.g., edges and vacancy defects) and the impact of the crystal structure (e.g., 1T phase). We also introduce some basic principles based on the structure-activity relationships to describe the intrinsic activation mechanisms. In addition, we discuss discrepancies in previous reports on MoS<sub>2</sub>-based AOP systems. Finally, roadblocks are identified and future orientation is directed regarding catalyst design, system optimization, and practical applications.</p></div>","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"1 1","pages":"Pages 1-9"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773058122000023/pdfft?md5=a114578fcf822f88183120007467012c&pid=1-s2.0-S2773058122000023-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71900091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in electrochemical removal and recovery of phosphorus from water: A review","authors":"Yifan Ren , Wentian Zheng , Xiaoguang Duan , Nirmal Goswami , Yanbiao Liu","doi":"10.1016/j.efmat.2022.04.003","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.04.003","url":null,"abstract":"<div><p>Phosphorus (P) is an essential microelement for biota. Phosphate minerals obtained through subsurface mining are the main sources of P. Phosphate-bearing rocks are nonrenewable and reserves are limited, so overexploitation will cause a shortage of P. However, releasing large amounts of P into water bodies can cause eutrophication. The problems of availability of P and P-related pollution require long-term sustainable responses. Electrochemical P recovery methods have recently been found to offer promise for solving these problems. Here, we describe recent advances in electrochemical methods for removing and recovering P in various forms from aqueous systems and summarize the fundamentals and parameters affecting the methods. The review is not only limited to orthophosphate but also includes non-ortho P and phosphite, which are often overlooked. The economic viabilities of various methods are assessed and the constraints and prospects of the methods are summarized. Improving electrochemical methods will require interdisciplinary research in the fields of electrochemistry, chemical engineering, and environmental science.</p></div>","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"1 1","pages":"Pages 10-20"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773058122000072/pdfft?md5=d0955173eaccebe34544cb30d4b9bd45&pid=1-s2.0-S2773058122000072-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71900092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}