Droplet最新文献

筛选
英文 中文
Magnetically responsive manipulation of droplets and bubbles 以磁感应方式操纵液滴和气泡
Droplet Pub Date : 2024-03-25 DOI: 10.1002/dro2.117
Shaojun Jiang, Dong Wu, Jiawen Li, Jiaru Chu, Yanlei Hu
{"title":"Magnetically responsive manipulation of droplets and bubbles","authors":"Shaojun Jiang,&nbsp;Dong Wu,&nbsp;Jiawen Li,&nbsp;Jiaru Chu,&nbsp;Yanlei Hu","doi":"10.1002/dro2.117","DOIUrl":"10.1002/dro2.117","url":null,"abstract":"<p>Droplets and bubbles have a wide range of applications in industry, agriculture, and daily life, and their controllable manipulation is of significant scientific and technological importance. Versatile magnetically responsive manipulation strategies have been developed to achieve precise control over droplets and bubbles. To manipulate nonmagnetic droplets or bubbles with magnetic fields, the presence of magnetic medium is indispensable. Magnetic additives can be added to the surface or interior of droplets and bubbles, allowing for on-demand manipulation by direct magnetic actuation. Alternatively, magnetically responsive elastomer substrates can be used to actuate droplets and bubbles by controlling the deformation of microstructures on the substrates through magnetic stimulation. Another strategy is based on untethered magnetic devices, which enables free mobility, facilitating versatile manipulation of droplets and bubbles in a flexible manner. This paper reviews the advances in magnetically responsive manipulation strategies from the perspective of droplets and bubbles. An overview of the different classes of magnetic medium, along with their respective corresponding droplet/bubble manipulation methods and principles, is first introduced. Then, the applications of droplet/bubble manipulation in biomedicine, microchemistry, and other fields are presented. Finally, the remaining challenges and future opportunities related to regulating droplet/bubble behavior using magnetic fields are discussed.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140381446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-lived yet bare bubbles in ultrasound 超声波中长期存在的裸露气泡
Droplet Pub Date : 2024-03-25 DOI: 10.1002/dro2.120
Jie Feng, Zhengyu Yang
{"title":"Long-lived yet bare bubbles in ultrasound","authors":"Jie Feng,&nbsp;Zhengyu Yang","doi":"10.1002/dro2.120","DOIUrl":"https://doi.org/10.1002/dro2.120","url":null,"abstract":"<p>A bare water bubble, without the stabilization of any surfactant, can remain intact for more than 7 min in ultrasound. By contrast, once the sound power is turned off, the bubble will burst within several seconds. Scale bar = 1 mm. The figure is reproduced from fig. 1b in the article by Xiaoliang Ji et al. published in <i>Droplet</i> (https://doi.org/10.1002/dro2.119).\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable self-transport of bouncing droplets on ultraslippery surfaces with wedge-shaped grooves 带楔形凹槽的超光滑表面上弹跳液滴的可控自传输
Droplet Pub Date : 2024-03-22 DOI: 10.1002/dro2.118
Chuchen Yue, Qingwen Dai, Xiaolong Yang, Carsten Gachot, Wei Huang, Xiaolei Wang
{"title":"Controllable self-transport of bouncing droplets on ultraslippery surfaces with wedge-shaped grooves","authors":"Chuchen Yue,&nbsp;Qingwen Dai,&nbsp;Xiaolong Yang,&nbsp;Carsten Gachot,&nbsp;Wei Huang,&nbsp;Xiaolei Wang","doi":"10.1002/dro2.118","DOIUrl":"10.1002/dro2.118","url":null,"abstract":"<p>Preventing the accretion of droplets on surfaces is vital and slippery liquid-infused porous surfaces (SLIPS) have promising application prospects, such as surface self-cleaning and droplet transportation. In this work, controllable self-transport of bouncing droplets on ultraslippery surfaces with wedge-shaped grooves is reported. The impact behaviors of droplets on SLIPS under various impact velocities and diameters are explored, which can be classified as hover, total bounce, partial bounce, Worthington jet, and crush. SLIPS with wedge-shaped grooves were designed to transport accreted droplets. An energy and transport model is established to explain the impact and self-transport mechanism, where the Laplace pressure and moving resistance between droplets play a key role. Finally, SLIPS with branched wedge-shaped grooves were designed for droplet self-transport and demonstrated advantages. This work provides a general reference for spontaneous motion control of sessile droplets, droplets with initial impacting velocity, or even liquid films.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140214532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extraordinary stability of surfactant-free bubbles suspended in ultrasound 无表面活性剂气泡在超声波中悬浮的超强稳定性
Droplet Pub Date : 2024-03-20 DOI: 10.1002/dro2.119
Xiaoliang Ji, Wenxuan Zhong, Kangqi Liu, Yichen Jiang, Hongyue Chen, Wei Zhao, Duyang Zang
{"title":"Extraordinary stability of surfactant-free bubbles suspended in ultrasound","authors":"Xiaoliang Ji,&nbsp;Wenxuan Zhong,&nbsp;Kangqi Liu,&nbsp;Yichen Jiang,&nbsp;Hongyue Chen,&nbsp;Wei Zhao,&nbsp;Duyang Zang","doi":"10.1002/dro2.119","DOIUrl":"10.1002/dro2.119","url":null,"abstract":"<p>Gravity-induced drainage is one of the main destabilizing mechanisms for soap bubbles and foams. Here we show that solely through acoustic levitation without introducing any chemical stabilizers, liquid drainage in the bubble film can be completely inhibited, therefore leading to a significant enhancement of bubble lifetime by more than two orders of magnitude and enabling the bubble to survive puncturing by a needle. Based on sound simulation and force analysis, it has been found that acoustic radiation force, exerted on both the inner and outer surfaces of the levitated bubble, acts in opposite directions, thus providing a squeezing effect to the bubble film. The hydrostatic pressure that induces drainage has been balanced by the acoustic radiation pressure exerted on both sides of the film, which is at the origin of the sound stabilization mechanism. This study provides new insights into the interplay between sound and soap bubbles or films, thus stimulating a wide range of fundamental research concerning bubble films and expanding their applications in bio/chemical reactors.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140228499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Droplet collision of hypergolic propellants 双酚推进剂的液滴碰撞
Droplet Pub Date : 2024-03-18 DOI: 10.1002/dro2.116
Chengming He, ZhiXia He, Peng Zhang
{"title":"Droplet collision of hypergolic propellants","authors":"Chengming He,&nbsp;ZhiXia He,&nbsp;Peng Zhang","doi":"10.1002/dro2.116","DOIUrl":"10.1002/dro2.116","url":null,"abstract":"<p>In the present mini-review, droplet impacting on a liquid pool, jet impingement, and binary droplet collision of nonreacting liquids are first summarized in terms of basic phenomena and the corresponding nondimensional parameters. Then, two representative hypergolic bipropellant systems, a hypergolic fuel of <i>N,N,N′,N′</i>-tetramethylethylenediamine (TMEDA) and an oxidizer of white fuming nitric acid (WFNA) and a monoethanolamine-based fuel (MEA-NaBH<sub>4</sub>) and a high-density hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), are discussed in detail to unveil the rich underlying physics such as liquid-phase reaction, heat transfer, phase change, and gas-phase reaction. This review focuses on quantifying and interpreting the parametric dependence of the gas-phase ignition induced by droplet collision of liquid hypergolic propellants. The advances in droplet collision of hypergolic propellants are important for modeling the real hypergolic impinging-jet (spray) combustion and for the design optimization of orbit-maneuver rocket engines.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.116","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140232554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jumping droplets 跳跃的水滴
Droplet Pub Date : 2024-03-15 DOI: 10.1002/dro2.105
Jonathan B. Boreyko
{"title":"Jumping droplets","authors":"Jonathan B. Boreyko","doi":"10.1002/dro2.105","DOIUrl":"10.1002/dro2.105","url":null,"abstract":"<p>When microdroplets with quasi-spherical contact angles coalesce together on a low-adhesion substrate, the capillary-inertial expansion of the liquid bridge induces a dramatic out-of-plane jumping event due to symmetry breaking. From the onset of merging, droplet jumping initiates after a capillary-inertial time scale of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>t</mi>\u0000 \u0000 <mrow>\u0000 <mspace></mspace>\u0000 \u0000 <mtext>ci</mtext>\u0000 </mrow>\u0000 </msub>\u0000 \u0000 <mo>∼</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>–</mo>\u0000 <mspace></mspace>\u0000 \u0000 <mn>100</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${t}_{text{ci}}sim 1mbox{--},100$</annotation>\u0000 </semantics></math> μs with characteristic jumping speeds of order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>v</mi>\u0000 \u0000 <mi>j</mi>\u0000 </msub>\u0000 \u0000 <mo>∼</mo>\u0000 \u0000 <mn>0.1</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${v}_{{rm{j}}}sim 0.1$</annotation>\u0000 </semantics></math> m/s. This coalescence-induced jumping-droplet effect is most commonly observed among a population of growing dew droplets on a superhydrophobic condenser, but can also occur by colliding deposited droplets together or during droplet sliding on fog harvesters. In this review, we cover the historical development of capillary-inertial jumping droplets, summarize the decade-long effort to rationalize the ultra-low energy conversion efficiency and critical droplet size of the phenomenon, and then present 15 variations on a theme of jumping. Capillary-inertial jumping droplets are not only a visceral illustration of the surprising power of surface tension at the microscale but they also have the potential to enhance phase-change heat transfer, enable self-cleaning surfaces, combat frost formation, harvest energy, and govern the rate of disease spread for wheat crops.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140237305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring anomalous nanofluidic transport at the interfaces 探索界面上的反常纳米流体传输
Droplet Pub Date : 2024-03-13 DOI: 10.1002/dro2.110
Shengping Zhang, Ruiyang Song, Haiou Zeng, Ningran Wu, Hongwei Duan, Luda Wang
{"title":"Exploring anomalous nanofluidic transport at the interfaces","authors":"Shengping Zhang,&nbsp;Ruiyang Song,&nbsp;Haiou Zeng,&nbsp;Ningran Wu,&nbsp;Hongwei Duan,&nbsp;Luda Wang","doi":"10.1002/dro2.110","DOIUrl":"10.1002/dro2.110","url":null,"abstract":"<p>Transport of ions and water is essential for diverse physiological activities and industrial applications. As the dimension approaches nano and even angstrom scale, ions and water exhibit anomalous behaviors that differ significantly from the bulk. One of the key reasons for these distinctive behaviors is the prominent influence of surface effects and related transport properties occurring at the interface under such (sub)nanoconfinement. Therefore, exploring nanofluidic transport at the interfaces could not only contribute to unraveling the intriguing ion and water transport behaviors but also facilitate the development of nanofluidic devices with tunable mass transport for practical applications. In this review, we focus on three crucial interfaces governing ion and water transport, namely liquid–gas interface, liquid–solid interface, and liquid–liquid interface, with emphasis on elucidating their intricate interfacial structures and critical roles for nanofluidic transport phenomena. Additionally, potential applications associated with liquid–gas, liquid–solid, and liquid–liquid interfaces are also discussed. Finally, we present a perspective on the pivotal roles of interfaces on nanofluidics, as well as challenges in this advancing field.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140247145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Actuating droplets with electrowetting: Force and dynamics 用电润湿驱动液滴:力和动力学
Droplet Pub Date : 2024-03-10 DOI: 10.1002/dro2.108
Robert Hennig, Vito Cacucciolo, Herbert Shea
{"title":"Actuating droplets with electrowetting: Force and dynamics","authors":"Robert Hennig,&nbsp;Vito Cacucciolo,&nbsp;Herbert Shea","doi":"10.1002/dro2.108","DOIUrl":"10.1002/dro2.108","url":null,"abstract":"<p>Electrowetting on dielectric (EWOD) allows rapid movement of liquid droplets on a smooth surface, with applications ranging from lab-on-chip devices to micro-actuators. The in-plane force on a droplet is a key indicator of EWOD performance. This force has been extensively modeled but few direct experimental measurements are reported. We study the EWOD force on a droplet using two setups that allow, for the first time, the simultaneous measurement of force and contact angle, while imaging the droplet shape at 6000 frames/s. For several liquids and surfaces, we observe that the force saturates at a voltage of approximately 150 V. Application of voltages of up 2 kV, that is, 10 times higher than is typical, does not significantly increase forces beyond the saturation point. However, we observe that the transient dynamics, localized at the front contact line, do not show saturation with voltage. At the higher voltages, the initial front contact line speed continues to increase, the front contact angle temporarily becomes near zero, creating a thin liquid film, and capillary waves form at the liquid–air interface. When the localized EWOD forces at the contact line exceed the capillary forces, projectile droplets form. Increasing surface tension allows for higher droplet forces, which we demonstrate with mercury.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140255390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Droplet Laplace valve-enabled glaucoma implant for intraocular pressure management 用于控制眼压的液滴拉普拉斯阀青光眼植入物
Droplet Pub Date : 2024-02-26 DOI: 10.1002/dro2.109
Yuyang Wang, Zecong Fang, Sen Li, Kexin Lin, Zhifeng Zhang, Junyi Chen, Tingrui Pan
{"title":"Droplet Laplace valve-enabled glaucoma implant for intraocular pressure management","authors":"Yuyang Wang,&nbsp;Zecong Fang,&nbsp;Sen Li,&nbsp;Kexin Lin,&nbsp;Zhifeng Zhang,&nbsp;Junyi Chen,&nbsp;Tingrui Pan","doi":"10.1002/dro2.109","DOIUrl":"10.1002/dro2.109","url":null,"abstract":"<p>Glaucoma, the leading cause of irreversible blindness worldwide, is closely linked to aqueous overaccumulation and elevated intraocular pressure (IOP). For refractory glaucoma, aqueous shunts with valves are commonly implanted for effective aqueous drainage control and IOP stabilization. However, existing valved glaucoma implants have the disadvantages of inconsistent valve opening/closing pressures, poor long-term repeatability due to their reliance on moving parts, and complex architectures and fabrication processes. Here, we propose a novel valving concept, the droplet Laplace valve (DLV), a three-dimensional printable moving-parts-free microvalve with customizable and consistent threshold valving pressures. The DLV uses a flow discretization unit governed by capillarity, comprising a droplet-forming nozzle, and a separated reservoir to digitize continuous flow into quantifiable droplets. Unlike the classic one-time-use Laplace valves, the DLV's unique design allows for its reusability. The opening pressure is adjustable by varying the nozzle size, like the classic Laplace valves (following the Young–Laplace equation), while the closing pressure can be modified by tuning the separation distance and the reservoir size. Various DLVs with customizable opening pressures from 5 to 11 mmHg have been demonstrated, with opening/closing pressure differences suppressed down to &lt;0.5 mmHg (&lt;0.15 mmHg under the best conditions). Thanks to its moving-parts-free nature and digitized flow properties, the DLV shows a highly repeatable valving performance (&lt;1.7%, 1000 cycles) and a predictable linear flow rate–pressure correlation (<i>R</i><sup>2</sup> &gt; 0.99). Preliminary ex vivo validation in an enucleated porcine eye confirms the DLV's efficiency in aqueous shunting and prompt IOP stabilization. The DLV technology holds great promise in glaucoma implants for IOP management and various microsystems for flow control.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140429159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying droplet–solid friction using an atomic force microscope 利用原子力显微镜量化液滴与固体之间的摩擦力
Droplet Pub Date : 2024-02-20 DOI: 10.1002/dro2.107
Xue Qi Koh, Calvin Thenarianto, Ville Jokinen, Dan Daniel
{"title":"Quantifying droplet–solid friction using an atomic force microscope","authors":"Xue Qi Koh,&nbsp;Calvin Thenarianto,&nbsp;Ville Jokinen,&nbsp;Dan Daniel","doi":"10.1002/dro2.107","DOIUrl":"10.1002/dro2.107","url":null,"abstract":"<p>Controlling the wetting and spreading of microdroplets is key to technologies such as microfluidics, ink-jet printing, and surface coating. Contact angle goniometry is commonly used to characterize surface wetting by droplets, but the technique is ill-suited for high contact angles close to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mn>180</mn>\u0000 \u0000 <mo>°</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $180^circ $</annotation>\u0000 </semantics></math>. Here, we attach a micrometric-sized droplet to an atomic force microscope cantilever to directly quantify droplet–solid friction on different surfaces (superhydrophobic and underwater superoleophobic) with sub-nanonewton force resolutions. We demonstrate the versatility of our approach by performing friction measurements using different liquids (water and oil droplets) and under different ambient environments (in air and underwater). Finally, we show that underwater superoleophobic surfaces can be qualitatively different from superhydrophobic surfaces: droplet–solid friction is highly sensitive to droplet speeds for the former but not for the latter surface.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140448175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信