Droplet最新文献

筛选
英文 中文
Programmable optical window bonding enabled 3D printing of high-resolution transparent microfluidic devices for biomedical applications 可编程光学窗口键合实现了用于生物医学应用的高分辨率透明微流体装置的3D打印
Droplet Pub Date : 2025-01-06 DOI: 10.1002/dro2.153
Mengguang Ye, Yuxiang Xue, Hongyu Zhao, Patricia Hazelton, Yuxuan Ji, Glen McHale, Xianfeng Chen
{"title":"Programmable optical window bonding enabled 3D printing of high-resolution transparent microfluidic devices for biomedical applications","authors":"Mengguang Ye,&nbsp;Yuxiang Xue,&nbsp;Hongyu Zhao,&nbsp;Patricia Hazelton,&nbsp;Yuxuan Ji,&nbsp;Glen McHale,&nbsp;Xianfeng Chen","doi":"10.1002/dro2.153","DOIUrl":"https://doi.org/10.1002/dro2.153","url":null,"abstract":"<p>Traditional technologies for manufacturing microfluidic devices often involve the use of molds for polydimethylsiloxane (PDMS) casting generated from photolithography techniques, which are time-consuming, costly, and difficult to use in generating multilayered structure. As an alternative, 3D printing allows rapid and cost-effective prototyping and customization of complex microfluidic structures. However, 3D-printed devices are typically opaque and are challenging to create small channels. Herein, we introduce a novel “programmable optical window bonding” 3D printing method that incorporates the bonding of an optical window during the printing process, facilitating the fabrication of transparent microfluidic devices with high printing fidelity. Our approach allows direct and rapid manufacturing of complex microfluidic structure without the use of molds for PDMS casting. We successfully demonstrated the applications of this method by fabricating a variety of microfluidic devices, including perfusable chips for cell culture, droplet generators for spheroid formation, and high-resolution droplet microfluidic devices involving different channel width and height for rapid antibiotic susceptibility testing. Overall, our 3D printing method demonstrates a rapid and cost-effective approach for manufacturing microfluidic devices, particularly in the biomedical field, where rapid prototyping and high-quality optical analysis are crucial.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effect in liquid metal heartbeat with high-efficiency energy conversion 具有高效能量转换的液态金属心跳协同效应
Droplet Pub Date : 2025-01-06 DOI: 10.1002/dro2.161
Shutong Wang, Sicheng Wang, Binbin Zhou, Dongmei Ren, Zhenwei Yu
{"title":"Synergistic effect in liquid metal heartbeat with high-efficiency energy conversion","authors":"Shutong Wang,&nbsp;Sicheng Wang,&nbsp;Binbin Zhou,&nbsp;Dongmei Ren,&nbsp;Zhenwei Yu","doi":"10.1002/dro2.161","DOIUrl":"https://doi.org/10.1002/dro2.161","url":null,"abstract":"<p>The phenomenon of liquid metal “heartbeat” oscillation presents intriguing applications in microfluidic devices, drug delivery, and miniature robotics. However, achieving high vibrational kinetic energy outputs in these systems remains challenging. In this study, we developed a graphite ring electrode with V-shaped inner wall that enables wide-ranging control over the oscillation performance based on droplet size and the height of the V-shape. The mechanism driving the heartbeat is defined as a dynamic process involving the transformation of the oxide layer. Through electrochemical analysis, we confirmed three distinct states of the heartbeat and introduced a novel model to elucidate the role of the V-shaped structure in initiating and halting the oscillations. A comprehensive series of experiments explored how various factors, such as droplet volume, voltage, tilt angle, and V-shape height, affect heartbeat performance, achieving a significant conversion from surface energy to vibrational kinetic energy as high as 4732 J m<sup>−2</sup> s<sup>−1</sup>. The increase in energy output is attributed to the synergistic effect of the V-shape height and droplet size on the oscillations. These results not only advance our understanding of liquid metal droplet manipulation but also pave the way for designing high-speed microfluidic pumping systems.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of preheated air temperature on a liquid ammonia flash spray in a swirl combustor 预热空气温度对旋流燃烧室液氨闪蒸喷雾的影响
Droplet Pub Date : 2025-01-06 DOI: 10.1002/dro2.159
Jiawen Liu, Meng Zhang, Zhenhua An, Jinhua Wang, Zuohua Huang
{"title":"Effect of preheated air temperature on a liquid ammonia flash spray in a swirl combustor","authors":"Jiawen Liu,&nbsp;Meng Zhang,&nbsp;Zhenhua An,&nbsp;Jinhua Wang,&nbsp;Zuohua Huang","doi":"10.1002/dro2.159","DOIUrl":"https://doi.org/10.1002/dro2.159","url":null,"abstract":"&lt;p&gt;Ammonia is a suitable carbon-free alternative fuel for power equipment. Direct combustion of liquid ammonia has the potential to reduce system costs and heat loss of gas turbine (GT). However, its tendency to flash and the high latent heat of vaporization can lead to combustion deterioration. Previous research suggests that stabilizing a liquid ammonia flame requires swirling and preheated air. So far, the influence mechanism of preheated air on liquid ammonia swirl spray remains inadequately explored. To fill this research gap, this study conducted a large eddy simulation (LES) to investigate the effect of preheated air temperature (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${T}_{mathrm{a}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) on a liquid ammonia flash spray in a swirl combustor. The influence of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${T}_{mathrm{a}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; on the spray morphology and the axial velocity, diameter, and temperature distributions of the droplets were investigated to understand the spray characteristics. Besides, the effects of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${T}_{mathrm{a}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; on the evaporation characteristics, the properties, and the possible ignition performance of the mixture were studied. The results show that with the increase of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${T}_{mathrm{a}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, the heating capacity of air is enhanced, leading to a greater proportion of droplets reaching flash boiling conditions. This greatly optimizes the evaporation process, resulting in more complete evaporation and significantly smaller volume. The bulk air flow velocity is increased, causing the expansion of the inner recirculation zone (IRZ), and the gaseous temperature and mixture concentration distribution are optimized. In addition, the low gaseous ammonia concentration makes ignition difficulty at &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${T}_{mathrm{a}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; = 300 K. The high &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 ","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.159","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of gas flow rate on bubble formation on superhydrophobic surface 气体流速对超疏水表面气泡形成的影响
Droplet Pub Date : 2025-01-05 DOI: 10.1002/dro2.148
Daniel O'Coin, Hangjian Ling
{"title":"Effect of gas flow rate on bubble formation on superhydrophobic surface","authors":"Daniel O'Coin,&nbsp;Hangjian Ling","doi":"10.1002/dro2.148","DOIUrl":"https://doi.org/10.1002/dro2.148","url":null,"abstract":"<p>We experimentally studied the effect of gas flow rate <i>Q</i> on the bubble formation on a superhydrophobic surface (SHS). We varied <i>Q</i> in the range of 0.001 &lt; <i>Q/Q</i><sub>cr</sub> &lt; 0.35, where <i>Q</i><sub>cr</sub> is the critical value for a transition from the quasi-static regime to the dynamic regime. The bubble geometrical parameters and forces acting on the bubble were calculated. We found that as <i>Q</i> increase, the bubble detached volume (<i>V</i><sub>d</sub>) increased. After proper normalization, the relationship between <i>V</i><sub>d</sub> and <i>Q</i> generally agreed with those observed for bubbles detaching from hydrophilic and hydrophobic surfaces. Furthermore, we found that <i>Q</i> had a minor impact on bubble shape and the duration of bubble necking due to the negligible momentum of injected gas compared to surface tension and hydrostatic pressure. Lastly, we explained the primary reason for the larger <i>V</i><sub>d</sub> at higher flow rates, which was increased bubble volume during the necking process. Our results enhanced the fundamental understanding of bubble formation on complex surfaces and could provide potential solutions for controlling bubble generation and extending the application of SHS for drag reduction, anti-fouling, and heat and mass transfer enhancement.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Droplet menisci recognition by deep learning for digital microfluidics applications 液滴半月板识别的深度学习在数字微流体中的应用
Droplet Pub Date : 2025-01-05 DOI: 10.1002/dro2.151
Negar Danesh, Matin Torabinia, Hyejin Moon
{"title":"Droplet menisci recognition by deep learning for digital microfluidics applications","authors":"Negar Danesh,&nbsp;Matin Torabinia,&nbsp;Hyejin Moon","doi":"10.1002/dro2.151","DOIUrl":"https://doi.org/10.1002/dro2.151","url":null,"abstract":"<p>This paper demonstrates the use of deep learning, specifically the U-Net model, to recognize the menisci of droplets in an electrowetting-on-dielectric (EWOD) digital microfluidic (DMF) device. Accurate recognition of droplet menisci would enable precise control over the movement of droplets to improve the performance and reliability of an EWOD DMF system. Furthermore, important information such as fluid properties, droplet characteristics, spatial position, dynamic behavior, and reaction kinetics of droplets during DMF manipulation can be understood by recognizing the menisci. Through a convolutional neural network utilizing the U-Net architecture, precise identification of droplet menisci is achieved. A diverse dataset is prepared and used to train and test the model. As a showcase, details of training and the optimization of hyperparameters are described. Experimental validation demonstrated that the trained model achieves a 98% accuracy rate and a 0.92 Dice score, which confirms the model's high performance. After the successful recognition of droplet menisci, post-processing techniques are applied to extract essential information such as the droplet and bubble size and volume. This study shows that the trained U-Net model is capable of discerning droplet menisci even in the presence of background image interference and low-quality images. The model can detect not only simple droplets, but also compound droplets of two immiscible liquids, droplets containing gas bubbles, and multiple droplets of varying sizes. Finally, the model is shown to detect satellite droplets as small as 2% of the size of the primary droplet, which are byproducts of droplet splitting.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.151","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water-proofing mechanism of coupling structures observed in ladybird elytra and its bionic application 瓢虫鞘翅偶联结构的防水机理及其仿生应用
Droplet Pub Date : 2025-01-05 DOI: 10.1002/dro2.162
Jie Zhang, Hao Yang, Jiannan Cai, Junhao Shi, Yuquan Zheng, Hamed Rajabi, Jieliang Zhao, Jianing Wu
{"title":"Water-proofing mechanism of coupling structures observed in ladybird elytra and its bionic application","authors":"Jie Zhang,&nbsp;Hao Yang,&nbsp;Jiannan Cai,&nbsp;Junhao Shi,&nbsp;Yuquan Zheng,&nbsp;Hamed Rajabi,&nbsp;Jieliang Zhao,&nbsp;Jianing Wu","doi":"10.1002/dro2.162","DOIUrl":"https://doi.org/10.1002/dro2.162","url":null,"abstract":"<p>Ladybirds (<i>Coccinella septempunctata</i>) are adept at living in humid conditions as their elytra can effectively shield their bodies from raindrops. However, due to technical difficulties in examining the delicate structure, the understanding of the water-proofing mechanism of the coupling structure and its impact on the dome-like elytra response to the raindrops remain elusive. In this combined experimental and theoretical study, we showed that the coupling structure on the ladybird elytra can ward off the raindrops traveling at a velocity of 6 m/s, which generates an impact force equivalent to 600 times the body weight. The waterproofing mechanism relies on the deformability of the elytra and their microstructures, which collectively impedes the formation of microchannels for liquids. The enhanced water-proofing capabilities enabled by the coupling structures are validated through experimental testing on comparative 3D-printed models, showing the effectiveness of these structures in improving water resistance. Subsequently, we showcased a water-proofing device, which substantially improved the efficiency of solar panels in converting solar energy. This multidisciplinary study not only advances our understanding of the biomechanics of coupling systems in insects but also inspires the design of water-proofing deployable structures.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and preparation of a simplified microdroplet generation device for nanoliter volume collection and measurement with liquid microjunction–surface sampling probe–mass spectrometry 用于液体微结-表面采样探针-质谱法纳升体积采集与测量的简化微液滴生成装置的设计与制备
Droplet Pub Date : 2025-01-05 DOI: 10.1002/dro2.158
Daniel O. Reddy, Lishen Zhang, Thomas R. Covey, Richard D. Oleschuk
{"title":"Design and preparation of a simplified microdroplet generation device for nanoliter volume collection and measurement with liquid microjunction–surface sampling probe–mass spectrometry","authors":"Daniel O. Reddy,&nbsp;Lishen Zhang,&nbsp;Thomas R. Covey,&nbsp;Richard D. Oleschuk","doi":"10.1002/dro2.158","DOIUrl":"https://doi.org/10.1002/dro2.158","url":null,"abstract":"<p>Given recent interest in laboratory automation and miniaturization, the microdroplet research space has expanded across research disciplines and sectors. In turn, the microdroplet field is continually evolving and seeking new methods to generate microdroplets, especially in ways that can be integrated into diverse (microfluidic) workflows. Herein, we present a convenient, low-cost, and re-usable microdroplet generation device, termed as the “NanoWand,” which enables microdroplet formation in the nanoliter volume range through modulated surface energy and roughness, that is, an open surface energy trap (oSET), using commercially available and readily assembled coating and substrate materials. A wand-like shape is excised from a microscope glass cover slip via laser-micromachining and rendered hydrophobic; a circle is then cut-out from the hydrophobically modified wand's tip using laser-micromachining to create the oSET. By adjusting the size of the oSET with laser-micromachining, the volume of the microdroplet can be similarly controlled. Using liquid microjunction–surface sampling probe–mass spectrometry (LMJ-SSP-MS), specific NanoWand droplet capture volumes were estimated to be 117 ± 23.6 nL, 198 ± 30.3 nL, and 277 ± 37.1 nL, corresponding to oSET diameters of 0.75, 1.00, and 1.25 mm, respectively. This simple approach provides a user-friendly way to form and transfer microdroplets that could be integrated into different liquid handling applications, especially when combined with the LMJ-SSP and ambient ionization MS as a powerful and rapid analytical tool.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.158","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulations and experimental verifications at micro-, meso-, and macroscales of droplet evaporation: A comprehensive review with special focus on saline droplets 液滴蒸发的微观、中观和宏观尺度的数值模拟和实验验证:以盐水液滴为重点的综合综述
Droplet Pub Date : 2025-01-05 DOI: 10.1002/dro2.147
Youchen Ning, Yunhua Gan, Chuanshuai Dong, Ronghui Qi
{"title":"Numerical simulations and experimental verifications at micro-, meso-, and macroscales of droplet evaporation: A comprehensive review with special focus on saline droplets","authors":"Youchen Ning,&nbsp;Yunhua Gan,&nbsp;Chuanshuai Dong,&nbsp;Ronghui Qi","doi":"10.1002/dro2.147","DOIUrl":"https://doi.org/10.1002/dro2.147","url":null,"abstract":"<p>Evaporation of saline droplets significantly impacts industrial processes such as water and gas treatment. Simulations, with advantages in describing temperature, concentration, and velocity distribution inside the droplet, receive increasing attentions. This paper summarized research on numerical simulations of droplet evaporation at micro-, meso-, and macroscales, emphasizing saline or multicomponent droplets. Accurate description of physics at phase interfaces and within proves to be critical for modeling. While recent studies have investigated on interface motion and temperature distribution, the coupling effect of internal concentration and flow distribution is still rarely considered. Among numerical methods, the lattice Boltzmann method is suitable for droplet scale due to its ability to handle non-continuum behavior. Bridging multiscale models remains a challenge, particularly in describing Marangoni and capillary flows. Experimental approaches to the effects of external physical fields (electric, magnetic, convection, and laser) and substrate properties on evaporation were also reviewed. Visualizing evaporation under various conditions can validate macroscopic models, while experiments with different substrates can validate molecular scale simulations, as substrate properties primarily affect evaporation by affecting capillary flow at the droplet bottom. This paper comprehensively reviewed numerical research on droplet evaporation, and analyzed the advantages, limitations, and development directions of various numerical methods.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sugar detection using drop evaporation 液滴蒸发法测糖
Droplet Pub Date : 2025-01-05 DOI: 10.1002/dro2.150
Yixiao Qu, Zhengyuan Ma, Min Zhang, Xing Huang, Lujia Xuan, Rui Ding, Wenya Liao, Zhiqiang Wu, Yihe Lin, Kami Hu, Zheng Liu, Ruoyang Chen, Hui He
{"title":"Sugar detection using drop evaporation","authors":"Yixiao Qu,&nbsp;Zhengyuan Ma,&nbsp;Min Zhang,&nbsp;Xing Huang,&nbsp;Lujia Xuan,&nbsp;Rui Ding,&nbsp;Wenya Liao,&nbsp;Zhiqiang Wu,&nbsp;Yihe Lin,&nbsp;Kami Hu,&nbsp;Zheng Liu,&nbsp;Ruoyang Chen,&nbsp;Hui He","doi":"10.1002/dro2.150","DOIUrl":"https://doi.org/10.1002/dro2.150","url":null,"abstract":"<p>Evaporation deposition of a spilt sugary drop on the supporting surface can attract ants to surround it. People have a long history of using this phenomenon as an implication of sugar in the drop. Unfortunately, it is hard to detect sugar concentration and has to depend exclusively on ants. Here, we show a facile strategy for the eye-naked detection on sugar concentrations in common liquid mixtures, based on their evaporation depositions. Our experiments show that evaporation drops without any sugar form clear ring-like depositions, and the width of the ring area enlarges with the increase in sugar concentration. We demonstrate that the increase in sugar concentration can increase the liquid viscosity and decrease the capillary flow velocity, thus weakening the “coffee ring” effect. Our further experiments indicate that the temperature has insignificant effects on the correlation between sugar concentrations and ring-like depositions, but the substrate wettability impacts on the correlation by promoting the formation of ring-like depositions. Based on the mechanism study, we develop a strategy for detecting sugar concentrations via quantitatively correlating them with the width of the ring area, and demonstrate that it is valid for various liquid mixtures, for example, carbonate beverage, liquid medicine, and plant nutrient. Our findings not only present new insights into the understanding of the sugary drop evaporation, but also provide a facile strategy of detecting sugar concentration that promises great applications in food safety, pharmaceutical detection, and agricultural product measurements.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.150","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated copper-based Janus thermal system for efficient water harvesting around the clock 集成铜基Janus热系统,可全天候高效收集水
Droplet Pub Date : 2025-01-05 DOI: 10.1002/dro2.152
Congji Zhang, Guopeng Chen, Shangzhen Xie, Shuo Li, Ke Feng, Zhiguang Guo
{"title":"Integrated copper-based Janus thermal system for efficient water harvesting around the clock","authors":"Congji Zhang,&nbsp;Guopeng Chen,&nbsp;Shangzhen Xie,&nbsp;Shuo Li,&nbsp;Ke Feng,&nbsp;Zhiguang Guo","doi":"10.1002/dro2.152","DOIUrl":"https://doi.org/10.1002/dro2.152","url":null,"abstract":"<p>Many regions across the globe are grappling with water scarcity issues, prompting the exploration of innovative water harvesting techniques. While the development of high-performance water harvesting materials has been widely documented, these technologies often rely on a singular source with limited efficiency. This study presents a dual-functional copper Janus system that facilitates continuous freshwater harvesting by integrating seawater desalination powered by solar energy during daylight hours and fog collection during night and morning time. The Janus system consists of a copper sheet and copper foam substrate, featuring superhydrophilic pores arranged on the superhydrophobic surface, as well as superhydrophilic flake-like structures made of soot-carbon particles, which are deposited on the framework of the copper foam. The fog collection rate of this system has been measured at 210.65 kg m<sup>−2</sup> h<sup>−1</sup>, while the solar-driven evaporation rate of seawater under 1-sun conditions is reported at 1.44 kg m<sup>−2</sup> h<sup>−1</sup>. The fog collection and evaporation efficiency have been enhanced by 28.72% and 183.27%, respectively. Furthermore, the system demonstrates strong and consistent performance even after repeated use, ensuring sustained water collection over prolonged periods. Therefore, this study presents a promising avenue for water collection technologies and offers valuable insights for the advancement of sustainable freshwater production methods.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.152","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信