Cognitive Robotics最新文献

筛选
英文 中文
Fault diagnosis using transfer learning with dynamic multiscale representation 基于动态多尺度表示的迁移学习故障诊断
Cognitive Robotics Pub Date : 2023-01-01 DOI: 10.1016/j.cogr.2023.07.006
Xinjie Sun , Shubiao Wang , Jiangping Jing , Zhangliang Shen , Liudong Zhang
{"title":"Fault diagnosis using transfer learning with dynamic multiscale representation","authors":"Xinjie Sun ,&nbsp;Shubiao Wang ,&nbsp;Jiangping Jing ,&nbsp;Zhangliang Shen ,&nbsp;Liudong Zhang","doi":"10.1016/j.cogr.2023.07.006","DOIUrl":"https://doi.org/10.1016/j.cogr.2023.07.006","url":null,"abstract":"<div><p>A critical problem for fault diagnosis is caused by the feature shift under different working conditions, which significantly degenerates the diagnosis accuracy in practice. Aiming to solve this problem, this paper proposes a novel Transfser Learning (TL) framework with Dynamic Multiscale Representation (DMR) for fault diagnosis. This model draws the inspiration from the shared learning and transfer learning, processing information captured and exploited by multiscale signal factors. In particular, a novel multi-path merging network is proposed to generate dynamic weights for fusing multiscale factors. To drive this generation, and to control the extent of the shared fusion, the Multi-gate Mixture-of-Experts (MMoE) is introduced to model the tradeoff between scale-specific representation and inter-scale correlation. A transfer learning backend is also introduced to align cross-domain features, which enables proposed method to diagnose faults across distinct working conditions. Experiments evaluate the fault-diagnosis performance. Our primary, ablation and interpretation evaluations comprehensively indicate the robustness and flexibility of the proposed method to diverse fault diagnosis applications. Especially, the proposed method achieves 4.71% and 3.86% improved to the second best one (MSSLN) on the PHM2009 and MCP datasets, respectively.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"3 ","pages":"Pages 257-264"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49710708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mental simulation of actions for learning optimal poses 学习最佳姿势的心理模拟动作
Cognitive Robotics Pub Date : 2023-01-01 DOI: 10.1016/j.cogr.2023.07.003
Pietro Morasso
{"title":"Mental simulation of actions for learning optimal poses","authors":"Pietro Morasso","doi":"10.1016/j.cogr.2023.07.003","DOIUrl":"https://doi.org/10.1016/j.cogr.2023.07.003","url":null,"abstract":"<div><p>Mental simulation of actions is a powerful tool for allowing cognitive agents to develop <em>Prospection Capabilities</em> that are crucial for learning and memorizing key aspects in challenging actions. In particular, this study focuses on the initial or final posture of actions and provides a computational tool that allows an agent to evaluate their feasibility and appropriateness. Such tool is a kinematic network, equivalent to an internal body schema, that allows a cognitive agent to generate simulation-states that reach the goal with a comfortable final posture, by exploiting the redundancy of the kinematic network. This is obtained by activating and integrating in the network dynamics three types of virtual force fields: 1) Focal force field applied to the end-effector, related to the goal of the action; 2) Range of Motion force fields, applied separately and independently to each degree of freedom in order to preserve the natural joint limits; 3) Postural force field, applied to the pelvis area, for maintaining the projection of the center of mass of the body model inside the support base. The efficacy of this approach is demonstrated in relation to a simple task: reaching a heavy load in order to lift it and then shifting it forward before dropping it on a table. The mental simulation model attempts to provide a kinematic template compatible with the overall plan and the postural/articular constraints, as a function of the initial position of the body relative to the load. The simulation may fail and this indicates that the chosen initial posture is inappropriate for the task. Successful simulations can also be evaluated in terms of precision and effort by monitoring the peak torque required of each joint actuator. Optimal or at least sub-optimal solutions can be memorized in episodic memory, thus accruing the know-how of the agent.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"3 ","pages":"Pages 185-200"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49761359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence, machine learning and deep learning in advanced robotics, a review 先进机器人中的人工智能、机器学习和深度学习综述
Cognitive Robotics Pub Date : 2023-01-01 DOI: 10.1016/j.cogr.2023.04.001
Mohsen Soori , Behrooz Arezoo , Roza Dastres
{"title":"Artificial intelligence, machine learning and deep learning in advanced robotics, a review","authors":"Mohsen Soori ,&nbsp;Behrooz Arezoo ,&nbsp;Roza Dastres","doi":"10.1016/j.cogr.2023.04.001","DOIUrl":"https://doi.org/10.1016/j.cogr.2023.04.001","url":null,"abstract":"<div><p>Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) have revolutionized the field of advanced robotics in recent years. AI, ML, and DL are transforming the field of advanced robotics, making robots more intelligent, efficient, and adaptable to complex tasks and environments. Some of the applications of AI, ML, and DL in advanced robotics include autonomous navigation, object recognition and manipulation, natural language processing, and predictive maintenance. These technologies are also being used in the development of collaborative robots (cobots) that can work alongside humans and adapt to changing environments and tasks. The AI, ML, and DL can be used in advanced transportation systems in order to provide safety, efficiency, and convenience to the passengers and transportation companies . Also, the AI, ML, and DL are playing a critical role in the advancement of manufacturing assembly robots, enabling them to work more efficiently, safely, and intelligently. Furthermore, they have a wide range of applications in aviation management, helping airlines to improve efficiency, reduce costs, and improve customer satisfaction. Moreover, the AI, ML, and DL can help taxi companies in order to provide better, more efficient, and safer services to customers. The research presents an overview of current developments in AI, ML, and DL in advanced robotics systems and discusses various applications of the systems in robot modification. Further research works regarding the applications of AI, ML, and DL in advanced robotics systems are also suggested in order to fill the gaps between the existing studies and published papers. By reviewing the applications of AI, ML, and DL in advanced robotics systems, it is possible to investigate and modify the performances of advanced robots in various applications in order to enhance productivity in advanced robotic industries.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"3 ","pages":"Pages 54-70"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49732989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 46
Digital Twin applications toward Industry 4.0: A Review 面向工业4.0的数字孪生应用:综述
Cognitive Robotics Pub Date : 2023-01-01 DOI: 10.1016/j.cogr.2023.04.003
Mohd Javaid , Abid Haleem , Rajiv Suman
{"title":"Digital Twin applications toward Industry 4.0: A Review","authors":"Mohd Javaid ,&nbsp;Abid Haleem ,&nbsp;Rajiv Suman","doi":"10.1016/j.cogr.2023.04.003","DOIUrl":"https://doi.org/10.1016/j.cogr.2023.04.003","url":null,"abstract":"<div><p>Digital Twin is a virtual representation of objects, processes, and systems that exist in real-time. While Digital Twin can represent digital objects, they are often used to connect the physical and digital worlds. This technology plays a vital role in fulfilling various requirements of Industry 4.0. It gives a digital image of a factory's operations, a communications network's activities, or the movement of items through a logistics system. This paper studies Digital Twin and its need in Industry 4.0. Then the process and supportive features of Digital Twin for Industry 4.0 are diagrammatically discussed, and finally, the major applications of Digital Twin for Industry 4.0 are identified. Digital Twin sophistication depends on the process or product represented and the data available. Manufacturers can learn how assets will behave in real-time, in the physical world, by putting sensors on particular assets, gathering data, creating digital duplicates, and employing machine intelligence. They can confidently make wise judgments, which helps improve company performance. Digital Twin assesses material usage to save costs, discover inefficiencies, replicate tool tracking systems, and do other things. Manufacturers construct a digital clone for specific equipment and tools, exclusive products or systems, entire procedures, or anything else they want to improve on the factory floor. Sensors and other equipment that collect real-time data on the state of the process or product collect this information, which on the other hand, must be handled and processed appropriately. It is made feasible by IoT sensors, which collect data from the physical environment and transmit it to be virtually recreated. This information comprises design and engineering details that explain the asset's shape, materials, components, and behaviour or performance.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"3 ","pages":"Pages 71-92"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49710581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Scientific visualization for advanced deep-sea exploration equipment and underwater automatic manipulation 先进深海探测设备的科学可视化和水下自动操纵
Cognitive Robotics Pub Date : 2023-01-01 DOI: 10.1016/j.cogr.2023.08.001
Boxiong Yang , Lin Gan , Shelei Li , Bo Zhou , Tingting Yang , Xiaofei Liu , Chun Xiong , Jiaxue Zou
{"title":"Scientific visualization for advanced deep-sea exploration equipment and underwater automatic manipulation","authors":"Boxiong Yang ,&nbsp;Lin Gan ,&nbsp;Shelei Li ,&nbsp;Bo Zhou ,&nbsp;Tingting Yang ,&nbsp;Xiaofei Liu ,&nbsp;Chun Xiong ,&nbsp;Jiaxue Zou","doi":"10.1016/j.cogr.2023.08.001","DOIUrl":"https://doi.org/10.1016/j.cogr.2023.08.001","url":null,"abstract":"<div><p>Scientific visualization is important in modern technological activities and engineering exploration. Due to the dark and high-pressure characteristics of deep sea, it is difficult to visualize the entire operation of deep-sea equipment. Thus, it is of great necessity to use virtual simulation technology to help people understand the operation process of some deep-sea exploration equipment on the sea floor. In this paper, science, art, and new media are combined through artistic rendering, visual processing, and the technology of virtual reality (VR) and holography, which makes the exploration of the latest deep-sea lander and intelligent submersible named “Luling” look more intuitive and smart and have more visual impact and expression. Apart from that, automatic manipulation videos of the rover robot in the deep sea captured by the Luling are effectively nested to realize the goal of virtual and real presentation. The designed scientific visualization of deep-sea equipment can not only adapt to the display output of VR, mobile phones, TV, 360° showcase, and other platforms, but also achieve immersive experience and virtual simulation learning through HTC Vive VR equipment. The technology and design way of scientific visualization in this paper is universal and suitable to the same kind of engineering simulation.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"3 ","pages":"Pages 284-292"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49710711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An operational scrutinization of autonomous tractor-trailer robot considering motion resistance force of rubber tracked undercarriage 考虑橡胶履带底盘运动阻力的自主牵引拖车机器人操作检测
Cognitive Robotics Pub Date : 2023-01-01 DOI: 10.1016/j.cogr.2023.06.002
S.M. Shafaei , H. Mousazadeh
{"title":"An operational scrutinization of autonomous tractor-trailer robot considering motion resistance force of rubber tracked undercarriage","authors":"S.M. Shafaei ,&nbsp;H. Mousazadeh","doi":"10.1016/j.cogr.2023.06.002","DOIUrl":"https://doi.org/10.1016/j.cogr.2023.06.002","url":null,"abstract":"<div><p>In realm of researches involved in autonomous tractor-trailer robot, novel purpose of this research has been dedicated to motion resistance force of rubber tracked undercarriage of the robot. Hence, the motion resistance force was ascertained as affected by operational variables of robot forward speed (0.17, 0.33 and 0.5 m/s) and payload weight (1, 2, 3, 4 and 5 kN). Analytical results clarified that meaningful contribution of payload weight to the motion resistance force (15.26–28.05 N) was marginal (&lt; 8 times) in comparison with that of robot forward speed. Hence, adjustment of the forward speed than payload weight is suggested as priority. Modeling results described that combinatorial effect of robot forward speed and payload weight on the motion resistance force was synergetic. This disclosed linear increasing dependency of the motion resistance force on concurrent proliferation of robot forward speed and payload weight. Overall, these results are profitable for redesign and performance optimization of tractor-trailer robot with rubber tracked undercarriage in order to proliferate autonomous transportation capacity of payloads, especially for indoor and outdoor shipping and warehouse of factories and industrial environments.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"3 ","pages":"Pages 173-184"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49710729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rakshak: A modular unmanned ground vehicle for surveillance and logistics operations Rakshak:用于监视和后勤操作的模块化无人地面车辆
Cognitive Robotics Pub Date : 2023-01-01 DOI: 10.1016/j.cogr.2023.02.001
Abhijit Gadekar , Sakshi Fulsundar , Prathamesh Deshmukh , Jaideep Aher , Kaajal Kataria , Dr. Vibha Patel , Dr. Shivprakash Barve
{"title":"Rakshak: A modular unmanned ground vehicle for surveillance and logistics operations","authors":"Abhijit Gadekar ,&nbsp;Sakshi Fulsundar ,&nbsp;Prathamesh Deshmukh ,&nbsp;Jaideep Aher ,&nbsp;Kaajal Kataria ,&nbsp;Dr. Vibha Patel ,&nbsp;Dr. Shivprakash Barve","doi":"10.1016/j.cogr.2023.02.001","DOIUrl":"https://doi.org/10.1016/j.cogr.2023.02.001","url":null,"abstract":"<div><p>Over the past decade, the utilization of mobile robots in commercial and defense industries has rapidly increased. These robots are purpose-built to perform specific tasks and have proven to be particularly valuable in dangerous environments where human presence may be problematic. However, identifying hazardous areas for workers, soldiers, and emergen- cies during disasters and providing real-time surveillance data remain significant challenges. Conventional approaches, such as manual surveillance and mapping uncharted territories are time-consuming and susceptible to human error. UGVs enable standoff operations, which lowers or eliminates these problems in demanding, and hazardous conditions. This paper discusses the design and development of Rakshak: a modular UGV as a first response mechanism for 360° of real-time surveillance by mapping unknown areas and small- payload-based logistics operations. Teleoperation of the UGV is via radio transmission, a reliable and efficient method of communication. The modular design of the UGV allows for flexibility in adapting to various applications. Data acquisition and transfer to the mobile application are accomplished through Wi-Fi communication.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"3 ","pages":"Pages 23-33"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49723426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Generative artificial intelligence in the metaverse era 元宇宙时代的生成人工智能
Cognitive Robotics Pub Date : 2023-01-01 DOI: 10.1016/j.cogr.2023.06.001
Zhihan Lv
{"title":"Generative artificial intelligence in the metaverse era","authors":"Zhihan Lv","doi":"10.1016/j.cogr.2023.06.001","DOIUrl":"https://doi.org/10.1016/j.cogr.2023.06.001","url":null,"abstract":"<div><p>Generative artificial intelligence (AI) is a form of AI that can autonomously generate new content, such as text, images, audio, and video. Generative AI provides innovative approaches for content production in the metaverse, filling gaps in the development of the metaverse. Products such as ChatGPT have the potential to enhance the search experience, reshape information generation and presentation methods, and become new entry points for online traffic. This is expected to significantly impact traditional search engine products, accelerating industry innovation and upgrading. This paper presents an overview of the technologies and prospective applications of generative AI in the breakthrough of metaverse technology and offers insights for increasing the effectiveness of generative AI in creating creative content.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"3 ","pages":"Pages 208-217"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49710723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
LP-BT: A location privacy protection algorithm based on ball trees LP-BT:基于球树的位置隐私保护算法
Cognitive Robotics Pub Date : 2023-01-01 DOI: 10.1016/j.cogr.2023.05.001
Lechan Yang , Song Deng
{"title":"LP-BT: A location privacy protection algorithm based on ball trees","authors":"Lechan Yang ,&nbsp;Song Deng","doi":"10.1016/j.cogr.2023.05.001","DOIUrl":"https://doi.org/10.1016/j.cogr.2023.05.001","url":null,"abstract":"<div><p>With the maturity of global positioning technology and the massive popularity of mobile terminals, location-based services can provide people with convenient and efficient assistance. To use such services, mobile users need to provide location information and request query content. However, this process inevitably leads to the leakage of users’ privacy information, which poses a great threat to their property and personal safety. To address the privacy leakage in location services, this paper proposes a location privacy protection method based on ball tree (LP-BT). We first use the ball tree as a spatial index structure, and then do fuzzification on the location information of end users to obtain the maximum primary anonymous entropy, and combine the neural network learning algorithm to predict the corresponding entropy value. Finally, the final entropy is obtained based on the average entropy of the two stages. Experimental results on public dataset manifest that our model is superior to other models such as random selection model and path-based fake location generation model in terms of privacy protection level, user density and anonymization time overhead.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"3 ","pages":"Pages 127-134"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49732906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optimization of energy consumption in industrial robots, a review 工业机器人能耗优化研究综述
Cognitive Robotics Pub Date : 2023-01-01 DOI: 10.1016/j.cogr.2023.05.003
Mohsen Soori , Behrooz Arezoo , Roza Dastres
{"title":"Optimization of energy consumption in industrial robots, a review","authors":"Mohsen Soori ,&nbsp;Behrooz Arezoo ,&nbsp;Roza Dastres","doi":"10.1016/j.cogr.2023.05.003","DOIUrl":"https://doi.org/10.1016/j.cogr.2023.05.003","url":null,"abstract":"<div><p>Optimization of energy consumption in industrial robots can reduce operating costs, improve performance and increase the lifespan of the robot during part manufacturing. Choosing energy-efficient components such as motors, drives, and controllers can significantly reduce energy consumption in industrial robots. Over-sized motors and heavy robot arms can waste energy and decrease efficiency of industrial robots. By optimizing the robot programs and reducing idle time in robot operations, the amount of spent time can be reduced to minimize energy consumption of industrial robots. By using energy-efficient motors and drives, the amount of energy consumed by the robot can be reduced. Also, regular maintenance can reduce energy consumption of industrial robots by providing maximum efficiency for the robot's components. By implementing energy management systems, energy consumption of industrial robot can be monitored and analyzed to optimize energy consumption of industrial robot during working conditions. To minimize lost energy and reuse the energy usage during working times, regenerative braking can be used in the robots. The process of part manufacturing can be optimized in order to minimize the robot's movements and energy usage during working times of industrial robots. To analyze and optimize energy consumption in working schedules of industrial robots, different methodologies from recent published papers are reviewed in the study. Proper robot selection, energy-efficient robot motor and low wight robot arms, efficient programming of working schedules, regenerative braking system, regular maintenance of robot elements and optimized process of part production regarding the minimization of energy usage are discussed to optimize the energy consumption in industrial robots. As a result, future research works in the research field can be presented in order to optimize energy consumption, reduce operational costs, and increase sustainability of industrial robot operations in terms of productivity enhancement of part manufacturing.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"3 ","pages":"Pages 142-157"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49710401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信