在非交互式环境中自主发现基于视觉识别的新类别

Xuelin Zhang , Feng Liu , Xuelian Cheng , Siyuan Yan , Zhibin Liao , Zongyuan Ge
{"title":"在非交互式环境中自主发现基于视觉识别的新类别","authors":"Xuelin Zhang ,&nbsp;Feng Liu ,&nbsp;Xuelian Cheng ,&nbsp;Siyuan Yan ,&nbsp;Zhibin Liao ,&nbsp;Zongyuan Ge","doi":"10.1016/j.cogr.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Visual recognition with deep learning has recently been shown to be effective in robotic vision. However, these algorithms tend to be build under fixed and structured environment, which is rarely the case in real life. When facing unknown objects, avoidance or human interactions are required, which may miss critical objects or be prohibitively costly to obtain on robots in the real world. We consider a practical problem setting that aims to allow robots to automatically discover novel classes with only labelled known class samples in hand, defined as open-set clustering (OSC). To address the OSC problem, we propose a framework combining three approaches: 1) using selfsupervised vision transformers to mitigate the discard of information needed for clustering unknown classes; 2) adaptive weighting for image patches to prioritize patches with richer textures; and 3) incorporating a temperature scaling strategy to generate more separable feature embeddings for clustering. We demonstrate the efficacy of our approach in six fine-grained image datasets.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 191-203"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous novel class discovery for vision-based recognition in non-interactive environments\",\"authors\":\"Xuelin Zhang ,&nbsp;Feng Liu ,&nbsp;Xuelian Cheng ,&nbsp;Siyuan Yan ,&nbsp;Zhibin Liao ,&nbsp;Zongyuan Ge\",\"doi\":\"10.1016/j.cogr.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Visual recognition with deep learning has recently been shown to be effective in robotic vision. However, these algorithms tend to be build under fixed and structured environment, which is rarely the case in real life. When facing unknown objects, avoidance or human interactions are required, which may miss critical objects or be prohibitively costly to obtain on robots in the real world. We consider a practical problem setting that aims to allow robots to automatically discover novel classes with only labelled known class samples in hand, defined as open-set clustering (OSC). To address the OSC problem, we propose a framework combining three approaches: 1) using selfsupervised vision transformers to mitigate the discard of information needed for clustering unknown classes; 2) adaptive weighting for image patches to prioritize patches with richer textures; and 3) incorporating a temperature scaling strategy to generate more separable feature embeddings for clustering. We demonstrate the efficacy of our approach in six fine-grained image datasets.</div></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"4 \",\"pages\":\"Pages 191-203\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241324000156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241324000156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用深度学习进行视觉识别最近被证明在机器人视觉领域非常有效。然而,这些算法往往是在固定和结构化的环境下构建的,而现实生活中很少出现这种情况。在面对未知物体时,需要进行回避或人机交互,这可能会错过关键物体,或者在现实世界中机器人获得这些物体的成本过高。我们考虑了一个实际问题,其目的是让机器人在只掌握已知类别样本的情况下自动发现新类别,这被定义为开放集群(Open-Set Clustering,OSC)。为了解决开放集群问题,我们提出了一个结合三种方法的框架:1) 使用自监督视觉转换器来减少聚类未知类别所需的信息丢弃;2) 自适应图像片段加权,优先考虑纹理更丰富的片段;3) 结合温度缩放策略,生成更多可分离的特征嵌入,用于聚类。我们在六个细粒度图像数据集中展示了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous novel class discovery for vision-based recognition in non-interactive environments
Visual recognition with deep learning has recently been shown to be effective in robotic vision. However, these algorithms tend to be build under fixed and structured environment, which is rarely the case in real life. When facing unknown objects, avoidance or human interactions are required, which may miss critical objects or be prohibitively costly to obtain on robots in the real world. We consider a practical problem setting that aims to allow robots to automatically discover novel classes with only labelled known class samples in hand, defined as open-set clustering (OSC). To address the OSC problem, we propose a framework combining three approaches: 1) using selfsupervised vision transformers to mitigate the discard of information needed for clustering unknown classes; 2) adaptive weighting for image patches to prioritize patches with richer textures; and 3) incorporating a temperature scaling strategy to generate more separable feature embeddings for clustering. We demonstrate the efficacy of our approach in six fine-grained image datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信