Climate Smart Agriculture最新文献

筛选
英文 中文
Factors affecting decision-making to strengthen climate resilience of smallholder farms in the Centre region of Cameroon 影响加强喀麦隆中部地区小农农场气候适应能力决策的因素
Climate Smart Agriculture Pub Date : 2024-05-16 DOI: 10.1016/j.csag.2024.100004
Pierre Marie Chimi , William Armand Mala , Jean Louis Fobane , Karimou Ngamsou Abdel , Baruch Batamack Nkoué , Lethicia Flavine Feunang Nganmeni , Eusebe Ydelphonse Nyonce Pokam , Sophie Patience Endalle Minfele , John Hermann Matick , Franc Marley Tchandjie , François Manga Essouma , Joseph Martin Bell
{"title":"Factors affecting decision-making to strengthen climate resilience of smallholder farms in the Centre region of Cameroon","authors":"Pierre Marie Chimi ,&nbsp;William Armand Mala ,&nbsp;Jean Louis Fobane ,&nbsp;Karimou Ngamsou Abdel ,&nbsp;Baruch Batamack Nkoué ,&nbsp;Lethicia Flavine Feunang Nganmeni ,&nbsp;Eusebe Ydelphonse Nyonce Pokam ,&nbsp;Sophie Patience Endalle Minfele ,&nbsp;John Hermann Matick ,&nbsp;Franc Marley Tchandjie ,&nbsp;François Manga Essouma ,&nbsp;Joseph Martin Bell","doi":"10.1016/j.csag.2024.100004","DOIUrl":"10.1016/j.csag.2024.100004","url":null,"abstract":"<div><p>This study examined the resilience to climate change of smallholder family farms in the Centre Region of Cameroon. Data were collected using a mixed-methods strategy and analyzed using descriptive, multivariate, and inferential statistics. Family farms exhibited a mean climate resilience index of 0.46 (medium), with the Ntui, Mbangassina, Batchenga, and Obala regions scoring 0.42, 0.44, 0.47, and 0.51, respectively. Family farmers had a high transformation capacity (59.07 ​%), a low adaptation capacity (32.10 ​%), and a very low absorption capacity (8.82 ​%). Logistic regression revealed significant causal relationships (<em>p</em> ​&lt; ​0.05) between the capacity of the farms to adapt to climate fluctuations and change and annual income, access to agricultural inputs, access to agricultural machinery, and membership in a farmers organization. These are the primary factors that could significantly increase climate resilience in Cameroonian family farms. Consequently, policymakers in these regions and beyond should consider these as indicators when developing policies to strengthen the climate resilience of local agricultural systems. In doing so, they should also consider community monitoring and indigenous knowledge, which can help bridge the gap between local adverse impacts and the necessary adaptations to climate change.</p></div>","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"1 1","pages":"Article 100004"},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950409024000042/pdfft?md5=30e1d6a9348ce693c369713b8bf718f9&pid=1-s2.0-S2950409024000042-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141023372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate-smart agriculture: Insights and challenges 气候智能型农业:见解与挑战
Climate Smart Agriculture Pub Date : 2024-05-03 DOI: 10.1016/j.csag.2024.100003
Yilai Lou , Liangshan Feng , Wen Xing, Ning Hu, Elke Noellemeyer, Edith Le Cadre, Kazunori Minamikawa, Pardon Muchaonyerwa, Mohamed A.E. AbdelRahman, Érika Flávia Machado Pinheiro, Wim de Vries, Jian Liu, Scott X. Chang, Jizhong Zhou, Zhanxiang Sun, Weiping Hao, Xurong Mei
{"title":"Climate-smart agriculture: Insights and challenges","authors":"Yilai Lou ,&nbsp;Liangshan Feng ,&nbsp;Wen Xing,&nbsp;Ning Hu,&nbsp;Elke Noellemeyer,&nbsp;Edith Le Cadre,&nbsp;Kazunori Minamikawa,&nbsp;Pardon Muchaonyerwa,&nbsp;Mohamed A.E. AbdelRahman,&nbsp;Érika Flávia Machado Pinheiro,&nbsp;Wim de Vries,&nbsp;Jian Liu,&nbsp;Scott X. Chang,&nbsp;Jizhong Zhou,&nbsp;Zhanxiang Sun,&nbsp;Weiping Hao,&nbsp;Xurong Mei","doi":"10.1016/j.csag.2024.100003","DOIUrl":"10.1016/j.csag.2024.100003","url":null,"abstract":"<div><p>Agriculture, broadly defined to include crop and livestock production, forestry, aquaculture and fishery, represents a key source or sink of greenhouse gas emissions. It is also a vulnerable sector under climate change. The term climate-smart agriculture has been widely used since its inception in 2010, but no clear and unified understanding of its scientific meaning exists. Here, we systematically analyzed the relationship between agriculture and climate change and interpreted the scientific definition of climate-smart agriculture. We believe that climate-smart agriculture represents a modern production approach to coordinatively promote food security, climate mitigation benefits and agricultural adaptation to climate change towards the Sustainable Development Goals. In addition, due to the worsening global climate change situation, we expounded on the urgency and major challenges in promoting climate-smart agriculture.</p></div>","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"1 1","pages":"Article 100003"},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950409024000030/pdfft?md5=5c5abd295882d7dd6990e43dd33886ce&pid=1-s2.0-S2950409024000030-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141027560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupling of microbial-explicit model and machine learning improves the prediction and turnover process simulation of soil organic carbon 微生物显性模型与机器学习的耦合改进了土壤有机碳的预测和周转过程模拟
Climate Smart Agriculture Pub Date : 2024-04-23 DOI: 10.1016/j.csag.2024.100001
Xuebin Xu , Xianting Wang , Ping Zhou , Zhenke Zhu , Liang Wei , Shuang Wang , Periyasamy Rathinapriya , Qicheng Bei , Jinfei Feng , Fuping Fang , Jianping Chen , Tida Ge
{"title":"Coupling of microbial-explicit model and machine learning improves the prediction and turnover process simulation of soil organic carbon","authors":"Xuebin Xu ,&nbsp;Xianting Wang ,&nbsp;Ping Zhou ,&nbsp;Zhenke Zhu ,&nbsp;Liang Wei ,&nbsp;Shuang Wang ,&nbsp;Periyasamy Rathinapriya ,&nbsp;Qicheng Bei ,&nbsp;Jinfei Feng ,&nbsp;Fuping Fang ,&nbsp;Jianping Chen ,&nbsp;Tida Ge","doi":"10.1016/j.csag.2024.100001","DOIUrl":"10.1016/j.csag.2024.100001","url":null,"abstract":"<div><p>Modeling soil organic carbon (SOC) is helpful for understanding its distribution and turnover processes, which can guide the implementation of effective measures for carbon (C) sequestration and enhance land productivity. Process-based simulation with high interpretability and extrapolation, and machine learning modeling with high flexibility are two common methods for investigating SOC distribution and turnover. To take advantage of both methods, we developed a hybrid model by coupling of a two-carbon pool microbial model and machine learning for SOC modeling. Here, we assessed the SOC model's predictive, mapping, and interpretability capabilities for the SOC turnover process on Ningbo region. The results indicate that the microbial model with density-dependence (β ​= ​2) and microbial biomass carbon simulation performed better in modeling the parameters of the microbial-based C cycle, such as microbial carbon use efficiency (CUE), microbial mortality rate, and assimilation rate. By integrating this optimal microbial model and random forest (RF) model, the hybrid model improved the prediction accuracy of SOC, with an increased R<sup>2</sup> from 0.74 to 0.84, residual prediction deviation increased from 1.97 to 2.50, and reduced the root-mean-square error from 4.65 to 3.67 ​g ​kg<sup>−1</sup> compared to the conventional RF model. As a result, the predicted SOC distribution exhibited high spatial variation and provided abundant details. Microbial CUE and potential C input, represented by net primary productivity, emerged as the primary factors driving SOC distribution in Ningbo region. Projections of SOC under the CMIP6 SSP2-4.5 scenario revealed that regional C loss in high SOC areas was mainly caused by decreased microbial CUE and C input, induced by climate change. Our findings highlight the potential of combining the microbial-explicit model and machine learning to improve SOC prediction accuracy and understand SOC feedback in a changing climate.</p></div>","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"1 1","pages":"Article 100001"},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950409024000017/pdfft?md5=51776cd89ac145dabbf44e66f0e6d8b5&pid=1-s2.0-S2950409024000017-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140793462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Fluidic Sprinkler and Intelligent Sprinkler Irrigation Technologies 动态流体喷灌和智能喷灌技术
Climate Smart Agriculture Pub Date : 2023-01-01 DOI: 10.1007/978-981-19-8319-1
Xingye Zhu, Alexander Fordjour, Junping Liu, Shouqi Yuan
{"title":"Dynamic Fluidic Sprinkler and Intelligent Sprinkler Irrigation Technologies","authors":"Xingye Zhu, Alexander Fordjour, Junping Liu, Shouqi Yuan","doi":"10.1007/978-981-19-8319-1","DOIUrl":"https://doi.org/10.1007/978-981-19-8319-1","url":null,"abstract":"","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74549486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fish Farms Effluents for Irrigation and Fertilizer: Field and Modeling Studies 用于灌溉和肥料的养鱼场废水:实地和模型研究
Climate Smart Agriculture Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-93111-7_3
A. Zohry, S. Ouda
{"title":"Fish Farms Effluents for Irrigation and Fertilizer: Field and Modeling Studies","authors":"A. Zohry, S. Ouda","doi":"10.1007/978-3-030-93111-7_3","DOIUrl":"https://doi.org/10.1007/978-3-030-93111-7_3","url":null,"abstract":"","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80250760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate-Smart Agriculture: Reducing Food Insecurity 气候智慧型农业:减少粮食不安全
Climate Smart Agriculture Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-93111-7
S. Ouda, A. Zohry
{"title":"Climate-Smart Agriculture: Reducing Food Insecurity","authors":"S. Ouda, A. Zohry","doi":"10.1007/978-3-030-93111-7","DOIUrl":"https://doi.org/10.1007/978-3-030-93111-7","url":null,"abstract":"","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82052830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Climate Extremes and Crops 极端气候与作物
Climate Smart Agriculture Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-93111-7_5
S. Ouda, A. Zohry
{"title":"Climate Extremes and Crops","authors":"S. Ouda, A. Zohry","doi":"10.1007/978-3-030-93111-7_5","DOIUrl":"https://doi.org/10.1007/978-3-030-93111-7_5","url":null,"abstract":"","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"119 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77951463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Soil-Smart Practices: Integrated Soil Fertility Management 土壤智能实践:综合土壤肥力管理
Climate Smart Agriculture Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-93111-7_2
A. Zohry, S. Ouda
{"title":"Soil-Smart Practices: Integrated Soil Fertility Management","authors":"A. Zohry, S. Ouda","doi":"10.1007/978-3-030-93111-7_2","DOIUrl":"https://doi.org/10.1007/978-3-030-93111-7_2","url":null,"abstract":"","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85723791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration Between Crop-Smart, Water-Smart and Soil-Smart Practices 作物智慧型、水智慧型和土壤智慧型实践的整合
Climate Smart Agriculture Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-93111-7_4
A. Zohry, S. Ouda
{"title":"Integration Between Crop-Smart, Water-Smart and Soil-Smart Practices","authors":"A. Zohry, S. Ouda","doi":"10.1007/978-3-030-93111-7_4","DOIUrl":"https://doi.org/10.1007/978-3-030-93111-7_4","url":null,"abstract":"","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"264 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91445131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Harvest of Fresh Market Apples 新鲜市场苹果的机械收获
Climate Smart Agriculture Pub Date : 2022-01-01 DOI: 10.1007/978-981-16-5316-2
{"title":"Mechanical Harvest of Fresh Market Apples","authors":"","doi":"10.1007/978-981-16-5316-2","DOIUrl":"https://doi.org/10.1007/978-981-16-5316-2","url":null,"abstract":"","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"73 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86368976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信