Biomimetic Intelligence and Robotics最新文献

筛选
英文 中文
LQR-based control strategy for improving human–robot companionship and natural obstacle avoidance 基于 LQR 的控制策略,改善人机陪伴和自然避障能力
Biomimetic Intelligence and Robotics Pub Date : 2024-10-04 DOI: 10.1016/j.birob.2024.100185
Zefan Su , Hanchen Yao , Jianwei Peng , Zhelin Liao , Zengwei Wang , Hui Yu , Houde Dai , Tim C. Lueth
{"title":"LQR-based control strategy for improving human–robot companionship and natural obstacle avoidance","authors":"Zefan Su ,&nbsp;Hanchen Yao ,&nbsp;Jianwei Peng ,&nbsp;Zhelin Liao ,&nbsp;Zengwei Wang ,&nbsp;Hui Yu ,&nbsp;Houde Dai ,&nbsp;Tim C. Lueth","doi":"10.1016/j.birob.2024.100185","DOIUrl":"10.1016/j.birob.2024.100185","url":null,"abstract":"<div><div>In the dynamic and unstructured environment of human–robot symbiosis, companion robots require natural human–robot interaction and autonomous intelligence through multimodal information fusion to achieve effective collaboration. Nevertheless, the control precision and coordination of the accompanying actions are not satisfactory in practical applications. This is primarily attributed to the difficulties in the motion coordination between the accompanying target and the mobile robot. This paper proposes a companion control strategy based on the Linear Quadratic Regulator (LQR) to enhance the coordination and precision of robot companion tasks. This method enables the robot to adapt to sudden changes in the companion target’s motion. Besides, the robot could smoothly avoid obstacles during the companion process. Firstly, a human–robot companion interaction model based on nonholonomic constraints is developed to determine the relative position and orientation between the robot and the companion target. Then, an LQR-based companion controller incorporating behavioral dynamics is introduced to simultaneously avoid obstacles and track the companion target’s direction and velocity. Finally, various simulations and real-world human–robot companion experiments are conducted to regulate the relative position, orientation, and velocity between the target object and the robot platform. Experimental results demonstrate the superiority of this approach over conventional control algorithms in terms of control distance and directional errors throughout system operation. The proposed LQR-based control strategy ensures coordinated and consistent motion with target persons in social companion scenarios.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"4 4","pages":"Article 100185"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive modeling of flexible EHD pumps using Kolmogorov–Arnold Networks 利用 Kolmogorov-Arnold 网络建立柔性 EHD 泵的预测模型
Biomimetic Intelligence and Robotics Pub Date : 2024-09-17 DOI: 10.1016/j.birob.2024.100184
Yanhong Peng , Yuxin Wang , Fangchao Hu , Miao He , Zebing Mao , Xia Huang , Jun Ding
{"title":"Predictive modeling of flexible EHD pumps using Kolmogorov–Arnold Networks","authors":"Yanhong Peng ,&nbsp;Yuxin Wang ,&nbsp;Fangchao Hu ,&nbsp;Miao He ,&nbsp;Zebing Mao ,&nbsp;Xia Huang ,&nbsp;Jun Ding","doi":"10.1016/j.birob.2024.100184","DOIUrl":"10.1016/j.birob.2024.100184","url":null,"abstract":"<div><div>We present a novel approach to predicting the pressure and flow rate of flexible electrohydrodynamic pumps using the Kolmogorov–Arnold Network. Inspired by the Kolmogorov–Arnold representation theorem, KAN replaces fixed activation functions with learnable spline-based activation functions, enabling it to approximate complex nonlinear functions more effectively than traditional models like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a dataset of flexible EHD pump parameters and compared its performance against RF, and MLP models. KAN achieved superior predictive accuracy, with Mean Squared Errors of 12.186 and 0.012 for pressure and flow rate predictions, respectively. The symbolic formulas extracted from KAN provided insights into the nonlinear relationships between input parameters and pump performance. These findings demonstrate that KAN offers exceptional accuracy and interpretability, making it a promising alternative for predictive modeling in electrohydrodynamic pumping.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"4 4","pages":"Article 100184"},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human–robot collaborative handling of curtain walls using dynamic motion primitives and real-time human intention recognition 利用动态运动基元和实时人类意图识别实现幕墙的人机协作操控
Biomimetic Intelligence and Robotics Pub Date : 2024-09-10 DOI: 10.1016/j.birob.2024.100183
Fengming Li , Huayan Sun , Enguang Liu , Fuxin Du
{"title":"Human–robot collaborative handling of curtain walls using dynamic motion primitives and real-time human intention recognition","authors":"Fengming Li ,&nbsp;Huayan Sun ,&nbsp;Enguang Liu ,&nbsp;Fuxin Du","doi":"10.1016/j.birob.2024.100183","DOIUrl":"10.1016/j.birob.2024.100183","url":null,"abstract":"<div><div>Human–robot collaboration fully leverages the strengths of both humans and robots, which is crucial for handling large, heavy objects at construction sites. To address the challenges of human–machine cooperation in handling large-scale, heavy objects — specifically building curtain walls — a human–robot collaboration system was designed based on the concept of “human–centered with machine support”. This system allows the handling of curtain walls according to different human intentions. First, a robot trajectory learning and generalization model based on dynamic motion primitives was developed. The operator’s motion intent was then characterized by their speed, force, and torque, with the force impulse introduced to define the operator’s intentions for acceleration and deceleration. Finally, a collaborative experiment was conducted on an experimental platform to validate the robot’s understanding of human handling intentions and to verify its ability to handle curtain wall. Collaboration between humans and robots ensured a smooth and labor-saving handling process.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"4 4","pages":"Article 100183"},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a spider-inspired wheeled compliant leg for search mobile robots 为搜索移动机器人设计受蜘蛛启发的轮式顺应腿
Biomimetic Intelligence and Robotics Pub Date : 2024-09-06 DOI: 10.1016/j.birob.2024.100182
Yilin Wang, Felix Pancheri, Tim C. Lueth, Yilun Sun
{"title":"Design of a spider-inspired wheeled compliant leg for search mobile robots","authors":"Yilin Wang,&nbsp;Felix Pancheri,&nbsp;Tim C. Lueth,&nbsp;Yilun Sun","doi":"10.1016/j.birob.2024.100182","DOIUrl":"10.1016/j.birob.2024.100182","url":null,"abstract":"<div><div>Earthquake and other disasters nowadays still threat people’s lives and property due to their destructiveness and unpredictability. The past decades have seen the booming development of search and rescue robots due to their potential for increasing rescue capacity as well as reducing personnel safety risk at disaster sites. In this work, we propose a spider-inspired wheeled compliant leg to further improve the environmental adaptability of search mobile robots. Different from the traditional fully-actuated method with independent motor joint control, this leg employs an under-actuated compliant mechanism design with overall semi-tendon-driven control, which enables the passive and active terrain adaptation, system simplification and lightweight of the realized search robot. We have generalized the theoretical model and design methodology for this type of compliant leg, and implement it in a parametric program to improve the design efficiency. In addition, preliminary load capacity and leg-lifting experiments are carried out on a one-leg prototype to evaluate its mechanical performance. A four-legged robot platform is also fabricated for the locomotion tests. The preliminary experimental results have verified the feasibility of the proposed design methodology, and also show possibilities for improvements. In future work, structural optimization and stronger actuation elements should be introduced to further improve the mechanical performance of the fabricated wheeled leg mechanism and robot platform.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"4 4","pages":"Article 100182"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667379724000408/pdfft?md5=bf6e8614b8d99680ff314cdf06a261ce&pid=1-s2.0-S2667379724000408-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bionic robotic ankle driven by the multiple pneumatic muscle actuators 由多个气动肌肉致动器驱动的仿生机器人脚踝
Biomimetic Intelligence and Robotics Pub Date : 2024-08-12 DOI: 10.1016/j.birob.2024.100176
Delei Fang, Fangyuan Ren, Jianwei Wang, Pan Li, Lin Cao, Junxia Zhang
{"title":"A bionic robotic ankle driven by the multiple pneumatic muscle actuators","authors":"Delei Fang,&nbsp;Fangyuan Ren,&nbsp;Jianwei Wang,&nbsp;Pan Li,&nbsp;Lin Cao,&nbsp;Junxia Zhang","doi":"10.1016/j.birob.2024.100176","DOIUrl":"10.1016/j.birob.2024.100176","url":null,"abstract":"<div><div>The traditional pneumatic muscle robot joint has weak load capacity and low control precision. This paper proposes a bionic robotic ankle driven by multiple pneumatic muscle actuators. The structural design of the bionic robotic ankle and the drive mechanism that imitates human muscle recruitment are introduced. A dynamic model of the ankle and a static model of the pneumatic muscle actuator are established to analyze the driving characteristics. The multi-muscle recruiting strategy and load matching control method are optimized, and the output characteristics are simulated, including the robotic ankle driven by a single pneumatic muscle actuator, the robotic ankle driven by dual pneumatic muscle actuators, and the bionic ankle driven by multiple pneumatic muscle actuators. A prototype and testing platform are developed, and experimental research is carried out to validate the theoretical analysis and simulation. The results show that the bionic robotic ankle driven by multiple pneumatic muscle actuators can match varied loads, effectively reducing angle error and increasing output force.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"4 4","pages":"Article 100176"},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial for the special issue on design, sensing and control in medical robots 为 "医用机器人的设计、传感和控制 "特刊撰稿
Biomimetic Intelligence and Robotics Pub Date : 2024-08-08 DOI: 10.1016/j.birob.2024.100177
Jiaole Wang, Shuang Song, Li Liu
{"title":"Editorial for the special issue on design, sensing and control in medical robots","authors":"Jiaole Wang,&nbsp;Shuang Song,&nbsp;Li Liu","doi":"10.1016/j.birob.2024.100177","DOIUrl":"10.1016/j.birob.2024.100177","url":null,"abstract":"","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"4 3","pages":"Article 100177"},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667379724000354/pdfft?md5=a2a374a17c5ee27c71c49b9b2c15885c&pid=1-s2.0-S2667379724000354-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing crack detection in railway tracks through AI-optimized ultrasonic guided wave modes 通过人工智能优化超声波导波模式加强铁轨裂缝检测
Biomimetic Intelligence and Robotics Pub Date : 2024-08-03 DOI: 10.1016/j.birob.2024.100175
Jianjun Liu , Huan Luo , Han Hu , Jian Li
{"title":"Enhancing crack detection in railway tracks through AI-optimized ultrasonic guided wave modes","authors":"Jianjun Liu ,&nbsp;Huan Luo ,&nbsp;Han Hu ,&nbsp;Jian Li","doi":"10.1016/j.birob.2024.100175","DOIUrl":"10.1016/j.birob.2024.100175","url":null,"abstract":"<div><p>The utilization of ultrasonic guided wave technology for detecting cracks in railway tracks involves analyzing echo signals produced by the interaction of cracks with guided wave modes to achieve precise crack localization, which is extremely important in a real-time railway crack robotic detection system. Addressing the challenge of selecting the optimal detection mode for cracks in various regions of railway tracks, this paper presents a method for optimal crack detection mode selection. This method is based on the sensitivity of guided wave modes to cracks. By examining the frequency dispersion characteristics and mode shapes of guided wave modes, we establish indicators for crack zone energy and crack reflection intensity. Our focus is on the railhead of the railway track, selecting guided wave modes characterized by specific cracks for detection purposes. Experimental findings validate the accuracy of our proposed mode selection method in detecting cracks in railway tracks. This research not only enhances crack detection but also lays the groundwork for exploring advanced detection and localization techniques for cracks in railway tracks.</p></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"4 3","pages":"Article 100175"},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667379724000330/pdfft?md5=f1d6b4975e49e463a5e7c59e37f53ce9&pid=1-s2.0-S2667379724000330-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142020792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new active rehabilitation training mode for upper limbs based on Tai Chi Pushing Hands 基于太极推手的上肢主动康复训练新模式
Biomimetic Intelligence and Robotics Pub Date : 2024-07-30 DOI: 10.1016/j.birob.2024.100174
Xiangpan Li , Liaoyuan Li , Jianhai Han , Bingjing Guo , Ganqin Du
{"title":"A new active rehabilitation training mode for upper limbs based on Tai Chi Pushing Hands","authors":"Xiangpan Li ,&nbsp;Liaoyuan Li ,&nbsp;Jianhai Han ,&nbsp;Bingjing Guo ,&nbsp;Ganqin Du","doi":"10.1016/j.birob.2024.100174","DOIUrl":"10.1016/j.birob.2024.100174","url":null,"abstract":"<div><p>Robot-assisted rehabilitation is a crucial approach to restoring motor function in the limb. However, the current training trajectory lacks sufficient theoretical or practical support, and the monotony of single-mode training is a concern. Tai Chi Pushing Hands, a beneficial and effective daily exercise, has been shown to improve balance function, psychological state, and motor function of the upper extremities in patients recovering from stroke. To address these issues, we propose a new active rehabilitation training that incorporates Tai Chi Pushing Hands movements and yin-yang balance principles. The training trajectory and direction are encoded by the velocity field and consist of two processes: yang (push) and yin (return). During yang, the limb actively pushes the robot to move, while during yin, the limb actively follows the robot’s movement. To provide necessary assistance, an admittance controller with self-adaptive parameters is designed. In addition, we introduce two indexes, the ‘Intention Angle’ (<span><math><mi>ϖ</mi></math></span>) and the time ratio (<span><math><mi>Γ</mi></math></span>), to evaluate motion perception performance. Our experiment was conducted on a 4-degree-of-freedom upper limb rehabilitation robot platform, and the subjects were separated into a familiar group and an unfamiliar group. The experiment results show that the training could be completed well no matter whether the subject is familiar with Tai Chi Pushing Hands or not. The parameters and the movement of the robot can be adjusted based on the interactive force to adapt to the ability of the subject.</p></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"4 3","pages":"Article 100174"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667379724000329/pdfft?md5=f9b9110812396c47d0e83436fd9f3ede&pid=1-s2.0-S2667379724000329-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and optimisation of soft robotic actuators for augmented lung-ventilation 用于增强肺通气的软机器人致动器的设计与优化
Biomimetic Intelligence and Robotics Pub Date : 2024-07-23 DOI: 10.1016/j.birob.2024.100172
Christopher Michael Hofmair , Kunal Bhakhri , Manish Chauhan
{"title":"Design and optimisation of soft robotic actuators for augmented lung-ventilation","authors":"Christopher Michael Hofmair ,&nbsp;Kunal Bhakhri ,&nbsp;Manish Chauhan","doi":"10.1016/j.birob.2024.100172","DOIUrl":"10.1016/j.birob.2024.100172","url":null,"abstract":"<div><p>Pulmonary rehabilitation through invasive ventilation involves the insertion of an endotracheal tube into the trachea of a sedated patient to control breathing via a ventilating machine. Invasive ventilation offers benefits such as greater control over oxygen supply, higher efficiency in supporting patient respiration, and the ability to manage airway secretions. However, this method also poses treatment challenges like ventilator-induced pneumonia, airway injury, long recovery times, and ventilator dependence. Here, we explore an alternative invasive ventilation technique using soft robotic actuators to mimic the biological function of the diaphragm for augmenting and assisting ventilation. We investigated two actuator geometries, each at two locations superior to the diaphragm. These actuators were tested on a bespoke ex vivo testbed that accurately simulated key diaphragmatic characteristics throughout the respiratory cycle. From this, we have been able to drive intrathoracic pressures greater than the 5 cmH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O required for ventilation in a human male. Additionally, by optimising the placement and geometry of these soft robotic actuators we have been able to generate maximum intrathoracic pressures of (6.81 ± 0.39) cmH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O.</p></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"4 3","pages":"Article 100172"},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667379724000305/pdfft?md5=9c0c6952e7b907f91a200a549fc185b6&pid=1-s2.0-S2667379724000305-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141839666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embodying rather than encoding: Towards developing a source-filter theory for undulation gait generation 体现而非编码:发展起伏步态生成的源过滤器理论
Biomimetic Intelligence and Robotics Pub Date : 2024-07-20 DOI: 10.1016/j.birob.2024.100173
Longchuan Li , Shugen Ma , Isao Tokuda , Zaiyang Liu , Zhenxuan Ma , Yang Tian , Shuai Kang
{"title":"Embodying rather than encoding: Towards developing a source-filter theory for undulation gait generation","authors":"Longchuan Li ,&nbsp;Shugen Ma ,&nbsp;Isao Tokuda ,&nbsp;Zaiyang Liu ,&nbsp;Zhenxuan Ma ,&nbsp;Yang Tian ,&nbsp;Shuai Kang","doi":"10.1016/j.birob.2024.100173","DOIUrl":"10.1016/j.birob.2024.100173","url":null,"abstract":"<div><p>Biological undulation enables legless creatures to move naturally, and robustly in various environments. Consequently, many kinds of undulating robots have been developed. However, the fundamental mechanism of biological undulation gait generation has not yet been well explained, which hinders deepening the investigation and optimization of these robots. Towards developing a theory for explaining this biological behavior, which will further guide the design of artificial undulation systems, we propose a hypothesis based on both biological findings and previous robotics studies. To verify the hypothesis, we investigate embodied intelligence of undulation locomotion via a mechanical system. Through experimental study, we observe the phenomenon that undulation gait is a production of the source, which is the torque inputs, and the filter, which is the natural dynamics of the system. We further derive a general mathematical model and conduct morphological computation accordingly. From a simple model to a complicated system, our work explores the principles of undulation gait generation. Our findings significantly simplify the control system design of artificial undulating systems.</p></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"4 3","pages":"Article 100173"},"PeriodicalIF":0.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667379724000317/pdfft?md5=314b46e8f4e1393c9d498325cc35db2b&pid=1-s2.0-S2667379724000317-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信