BiomassPub Date : 2024-06-03DOI: 10.3390/biomass4020029
Luiz Henrique Sant’ Ana, Jessica R. P. Oliveira, Giovanna Gonçalves, Â. Tusset, G. Lenzi
{"title":"Circular Economics in Agricultural Waste Biomass Management","authors":"Luiz Henrique Sant’ Ana, Jessica R. P. Oliveira, Giovanna Gonçalves, Â. Tusset, G. Lenzi","doi":"10.3390/biomass4020029","DOIUrl":"https://doi.org/10.3390/biomass4020029","url":null,"abstract":"The present study deals with the reuse of agro-industrial waste with a specific focus on biochar (processed plant biomass or biochar) consisting of organic and inorganic waste biomass subjected to thermochemical processes. The objective of this work is to carry out a systematic review of the literature according to the Methodi Ordinatio methodology and select a bibliographic portfolio of high relevance to this study that makes it possible to present the concepts, applications and interest on the part of companies in including biochar in their processes, as well as addressing the environmental impacts linked to incorrect waste disposal. In this sense, biochar presents an interesting potential solution from both a waste management and environmental point of view. The current challenge is studies that prove economic viability.","PeriodicalId":100179,"journal":{"name":"Biomass","volume":"40 45","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141270252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomassPub Date : 2024-06-03DOI: 10.3390/biomass4020027
Leticia Loss, Joana Azevedo, T. Azevedo, M. Freitas, Vitor Vasconcelos, Alexandre Campos
{"title":"Environmentally Friendly and Cost-Effective Approaches to Reduce Toxin Content in Toxic Cyanobacterial Biomasses","authors":"Leticia Loss, Joana Azevedo, T. Azevedo, M. Freitas, Vitor Vasconcelos, Alexandre Campos","doi":"10.3390/biomass4020027","DOIUrl":"https://doi.org/10.3390/biomass4020027","url":null,"abstract":"Cyanobacterial outgrowths are naturally occurring processes in eutrophic aquatic ecosystems. Furthermore, as a result of climate change and anthropogenic pollution, cyanobacteria harmful algal blooms (CyanoHABs) are expanding worldwide. CyanoHABs are considered a threat to human health and environment due to the production of potent toxic substances, but at the same time, valuable products can be obtained from these microorganisms. The main objective of this study was to test straightforward and cost-effective methods to reduce the toxin content of cyanobacterial biomass for the exploitation of this important biological resource. To carry out this study, lyophilized or hydrated biomass from microcystin-LR (MC-LR) producing Microcystis aeruginosa and cylindrospermopsin (CYN) producing Chrysosporum ovalisporum strains were subjected to the following treatments: (1) thermal (50 °C); (2) ultraviolet (UV) radiation; (3) ozone; and (4) sunlight, for periods varying between 2 and 12 h. MC-LR and CYN concentrations were quantified by LC-MS and compared between experimental groups. The results show a significant reduction in the amount of MC-LR in M. aeruginosa biomass (lyophilized and hydrated) exposed to sunlight. Since no other treatment reduced MC-LR in M. aeruginosa biomass, this molecule was demonstrated to be very stable. Regarding CYN, the concentration of this toxin in C. ovalisporum biomass was significantly reduced with the exposure to UV radiation, to approximately 51% of the initial concentration after 2 h of exposure; 86% reduction after 5 h of exposure; and 77% reduction after 12 h of exposure. Overall, this study demonstrates that the toxicity of cyanobacterial biomass can be reduced by employing environmentally friendly and cost-effective treatments with sunlight and UV radiation.","PeriodicalId":100179,"journal":{"name":"Biomass","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141272655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomassPub Date : 2024-06-03DOI: 10.3390/biomass4020026
L. Conde-Báez, Cuauhtémoc F. Pineda-Muñoz, C. Conde-Mejía, Elizabeth Mas-Hernández, Antioco López-Molina
{"title":"Conversion of Sweet Whey to Bioethanol: A Bioremediation Alternative for Dairy Industry","authors":"L. Conde-Báez, Cuauhtémoc F. Pineda-Muñoz, C. Conde-Mejía, Elizabeth Mas-Hernández, Antioco López-Molina","doi":"10.3390/biomass4020026","DOIUrl":"https://doi.org/10.3390/biomass4020026","url":null,"abstract":"In many countries, whey from the dairy industry is an abundant waste that generates an important environmental impact. Alternative processes to use the whey and minimize the environmental impact are needed. This work considered six formulations with different ammonium sulfate and L-phenylalanine (L-Phe) concentrations to produce bioethanol in sweet whey fermentation by Kluyveromyces marxianus. The results showed a maximum bioethanol concentration equal to 25.13 ± 0.37 g L−1 (p < 0.05) for formulation F6, with 1 g L−1 of L-Phe and 1.350 g L−1 of ammonium sulfate (96 h). For these conditions, the chemical oxygen demand removal percentage (CODR%) was 67%. The maximum CODR% obtained was 97.5% for formulation F3 (1 g L−1 of L-Phe) at 96 h; however, a significant decrease in bioethanol concentration (14.33 ± 2.58 g L−1) was observed. On the other hand, for formulation, F3, at 48 h of fermentation time, a bioethanol concentration of 23.71 ± 1.26 g L−1 was observed, with 76.5% CODR%. Based on these results, we suggest that the best conditions to obtain a significant bioethanol concentration and CODR% value are those used on the configuration F3 at 48 h.","PeriodicalId":100179,"journal":{"name":"Biomass","volume":"60 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141268599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomassPub Date : 2024-06-03DOI: 10.3390/biomass4020028
Sabrine Gemelli, S. T. Silveira, Maria Elisa Pailliè-Jiménez, Alesandro Oliveira Rios, A. Brandelli
{"title":"Production, Extraction and Partial Characterization of Natural Pigments from Chryseobacterium sp. kr6 Growing on Feather Meal Biomass","authors":"Sabrine Gemelli, S. T. Silveira, Maria Elisa Pailliè-Jiménez, Alesandro Oliveira Rios, A. Brandelli","doi":"10.3390/biomass4020028","DOIUrl":"https://doi.org/10.3390/biomass4020028","url":null,"abstract":"Obtaining natural pigments from microorganisms is an alternative with high potential for biotechnological application. The use of agro-industrial wastes as substrate for cultivations enables a reduction of the production cost and may add value to potentially polluting byproducts. In this work, the extraction of pigments produced by the bacterium Chryseobacterium sp. strain kr6 was evaluated, employing feather meal as the sole carbon source for bacterial growth. The maximum production of the yellow pigments was observed for cultivation at 30 °C, during 48 h, with 5 g/L feather meal. The pigment extraction from the bacterial biomass was performed with the aid of physical methods and the testing of different organic solvents. The conditions that provided better extraction were using ultrasound with acetone as the solvent, reaching a yield of 180 μg/g biomass after optimization. The pigment was partially characterized via UV-visible, FTIR and mass spectroscopy and CIELAB color parameters, suggesting the presence of molecules belonging to the flexirubin group (aryl polyenes). The antioxidant capacity of the pigment was confirmed via the scavenging of DPPH radical and thiobarbituric acid reactive substances (TBARS) methodologies. Moreover, the pigment extract showed antimicrobial activity against Staphylococcus aureus and Enterococcus faecalis.","PeriodicalId":100179,"journal":{"name":"Biomass","volume":"16 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141271120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomassPub Date : 2024-06-01DOI: 10.3390/biomass4020024
Sai-Leung Ng, Fung-Mei Wong
{"title":"Recent Developments in Research on Food Waste and the Circular Economy","authors":"Sai-Leung Ng, Fung-Mei Wong","doi":"10.3390/biomass4020024","DOIUrl":"https://doi.org/10.3390/biomass4020024","url":null,"abstract":"Food waste is a global challenge, with profound implications for food security, resource utilization, and sustainability. A circular economy represents a promising solution in addressing food waste effectively by keeping food materials and products in use and circulating them within the economy. To provide an overview of the research on food waste and the circular economy model in the past decade, this study examines 1022 documents on food waste and circular the economy to ascertain the state, themes, and knowledge structure of the field. The results showed that the number of publications has increased greatly in the past decade. “Circular economy of food”, “bioenergy”, “waste valorization”, “waste management”, “resource recovery”, and “environmental assessment” were the major research themes. Earlier studies focused on resource recovery from organic waste and the bioeconomy of bio-products; recent research interests shifted to sustainability and the valorization of agri-food waste. On the other hand, some highly cited documents and productive authors were important in the development of research on food waste and the circular economy. Furthermore, three groups of journals—“food and environmental sciences”, “open access”, and “environmental sustainability and resource management”—and five clusters of international collaboration—“European Union Group”, “advanced economy group”, “agricultural economies”, “global influencers”, and “isolated countries”—were identified. This study provides readers with an overview of the research field of food waste and the circular economy.","PeriodicalId":100179,"journal":{"name":"Biomass","volume":"53 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomassPub Date : 2024-06-01DOI: 10.3390/biomass4020025
Nikolina Popović Kokar, Anamarija Nikoletić, Marija Stanišić, Milica Crnoglavac Popović, R. Prodanović
{"title":"Photopolymerization of L-DOPA-Alginate Immobilized Cell Wall Laccase for Textile Dye Decolorization","authors":"Nikolina Popović Kokar, Anamarija Nikoletić, Marija Stanišić, Milica Crnoglavac Popović, R. Prodanović","doi":"10.3390/biomass4020025","DOIUrl":"https://doi.org/10.3390/biomass4020025","url":null,"abstract":"Alginate is a naturally occurring polymer derived from brown algae biomass, which has numerous applications in various fields. Chemical modification of alginate is widely used to improve alginate’s physicochemical properties and provide new potential for multiple applications. In this article, we modified alginate with L-DOPA, using periodate oxidation and reductive amination, to obtain more suitable biopolymer for biocatalyst immobilization and hydrogel formation. Obtained modified alginate was used for the immobilization of laccase on cell walls. For this purpose, laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The obtained cell wall laccase was immobilized within L-DOPA-alginate beads by crosslinking the L-DOPA-alginate with calcium ions and laccase. The effect of additional crosslinking of beads by green light-induced photopolymerization with eosin Y was investigated. The immobilized laccase systems were used for dye decolorization and investigated in multiple treatment processes. Beads with L-DOPA-alginate with a higher degree of modification (5.0 mol%) showed higher enzymatic activity and better decolorization efficiency than those with a lower degree of modification (2.5 mol%). Obtained immobilized biocatalysts are suitable for decolorizing dye Evans Blue due to their high efficiency and reusability.","PeriodicalId":100179,"journal":{"name":"Biomass","volume":"16 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomassPub Date : 2024-05-23DOI: 10.3390/biomass4020023
Puja Bhatt, Pranita Poudyal, Pradip Dhungana, Bikram Prajapati, Suman Bajracharya, Amar Prasad Yadav, T. Bhattarai, L. Sreerama, Jarina Joshi
{"title":"Enhancement of Biogas (Methane) Production from Cow Dung Using a Microbial Electrochemical Cell and Molecular Characterization of Isolated Methanogenic Bacteria","authors":"Puja Bhatt, Pranita Poudyal, Pradip Dhungana, Bikram Prajapati, Suman Bajracharya, Amar Prasad Yadav, T. Bhattarai, L. Sreerama, Jarina Joshi","doi":"10.3390/biomass4020023","DOIUrl":"https://doi.org/10.3390/biomass4020023","url":null,"abstract":"Biogas has long been used as a household cooking fuel in many tropical counties, and it has the potential to be a significant energy source beyond household cooking fuel. In this study, we describe the use of low electrical energy input in an anaerobic digestion process using a microbial electrochemical cell (MEC) to promote methane content in biogas at 18, 28, and 37 °C. Although the maximum amount of biogas production was at 37 °C (25 cm3), biogas could be effectively produced at lower temperatures, i.e., 18 (13 cm3) and 28 °C (19 cm3), with an external 2 V power input. The biogas production of 13 cm3 obtained at 18 °C was ~65-fold higher than the biogas produced without an external power supply (0.2 cm3). This was further enhanced by 23% using carbon-nanotubes-treated (CNT) graphite electrodes. This suggests that the MEC can be operated at as low as 18 °C and still produce significant amounts of biogas. The share of CH4 in biogas produced in the controls was 30%, whereas the biogas produced in an MEC had 80% CH4. The MEC effectively reduced COD to 42%, whereas it consumed 98% of reducing sugars. Accordingly, it is a suitable method for waste/manure treatment. Molecular characterization using 16s rRNA sequencing confirmed the presence of methanogenic bacteria, viz., Serratia liquefaciens and Zoballella taiwanensis, in the inoculum used for the fermentation. Consistent with recent studies, we believe that electromethanogenesis will play a significant role in the production of value-added products and improve the management of waste by converting it to energy.","PeriodicalId":100179,"journal":{"name":"Biomass","volume":"29 44","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomassPub Date : 2024-01-02DOI: 10.3390/biomass4010003
V. Athanasiadis, Theodoros G. Chatzimitakos, Konstantina Kotsou, Dimitris Kalompatsios, Eleni Bozinou, S. Lalas
{"title":"Utilization of Blackthorn Plums (Prunus spinosa) and Sweet Cherry (Prunus avium) Kernel Oil: Assessment of Chemical Composition, Antioxidant Activity, and Oxidative Stability","authors":"V. Athanasiadis, Theodoros G. Chatzimitakos, Konstantina Kotsou, Dimitris Kalompatsios, Eleni Bozinou, S. Lalas","doi":"10.3390/biomass4010003","DOIUrl":"https://doi.org/10.3390/biomass4010003","url":null,"abstract":"Prunus avium L. and Prunus spinosa L. are valuable fruit-bearing trees known for their bioactive compounds and medicinal properties. However, limited research exists regarding their kernel oils. This study aimed to compare the chemical composition, quality parameters, and bioactive potential of the kernel oils extracted from Prunus avium L. and Prunus spinosa L. The kernel oils’ fatty acid and tocopherol profiles were characterized, and the presence of bioactive compounds were identified and quantified. Total polyphenol content (TPC) and antioxidant activity (AAC) were also measured, indicating the presence of bioactive compounds in both oils. Additionally, the main quality parameters, including oxidative status, were evaluated. The fatty acid analysis revealed a higher proportion of polyunsaturated fatty acids compared to monounsaturated fatty acids in both kernel oil samples. Linoleic acid (57–64%) and oleic acid (18–29%) were the major fatty acids in both Prunus avium L. and Prunus spinosa L. kernel oils. α-Eleostearic acid (11.87%) was quantified only in Prunus avium kernel oil. Furthermore, the α-, β-, γ-, and δ-tocopherol content were determined, and it was found that both kernel oils contained γ-tocopherol as the major tocopherol (~204–237 mg/Kg). TPC in Prunus avium L. kernel oil was measured at 9.5 mg gallic acid equivalents (GAE)/Kg and recorded as ~316% higher TPC than Prunus spinosa L. kernel oil. However, the recorded AAC were 11.87 and 14.22 μmol Trolox equivalent (TE)/Kg oil, respectively. Both oils recorded low peroxide values (~1.50 mmol H2O2/Kg), and low TBARS value (~0.4 mmol malondialdehyde equivalents, MDAE/Kg oil), but high p-anisidine value (23–32). The results indicated that both Prunus avium L. and Prunus spinosa L. kernel oils exhibited unique chemical compositions.","PeriodicalId":100179,"journal":{"name":"Biomass","volume":"57 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139390647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomassPub Date : 2023-12-19DOI: 10.3390/biomass4010001
Georgios Bakratsas, Kyriakos Antoniadis, Panagiotis E. Athanasiou, P. Katapodis, H. Stamatis
{"title":"Laccase and Biomass Production via Submerged Cultivation of Pleurotus ostreatus Using Wine Lees","authors":"Georgios Bakratsas, Kyriakos Antoniadis, Panagiotis E. Athanasiou, P. Katapodis, H. Stamatis","doi":"10.3390/biomass4010001","DOIUrl":"https://doi.org/10.3390/biomass4010001","url":null,"abstract":"Large quantities of wine lees are produced annually by the wine industry. The high phenolic content makes them unsuitable for disposal in the environment or animal feed without a suitable treatment. In this study, wine lees were treated by Pleurotus ostreatus in submerged cultivation, producing a high-value biomass and elevated levels of laccase, an important industrial enzyme. Biomass and laccase production reached 21 g/L and 74,000 Units/L, respectively, at the optimal conditions of initial pH 6.0, 20% v/v wine lees, 30 g/L glucose, and 20 g/L yeast extract, while decolorization and dephenolization rates of the waste were over 90%. The mycelial biomass was rich in proteins and essential amino acids reaching up to 43% and 16% per dry weight, respectively. Carbohydrates and lipids were the second richest bioactive compound in biomass, with values of 29.4 ± 2.7% and 29.5 ± 2.7%, respectively. The crude laccase in the culture supernatant was purified via a simple two-step purification procedure by 4.4-fold with a recovery of 44%. The molecular weight of the enzyme was determined to be 62 kDa via SDS electrophoresis. Enzyme activity was optimal at pH 5.0 and 70 °C. The activation energy of the enzyme was calculated at a value of 20.0 ± 0.2 kJ/mol. The pH stability and thermostability of the purified laccase were studied. The enzyme was remarkably stable at pH 8.0 and at temperatures up to 40 °C. The thermal inactivation energy of the enzyme was determined to be 76.0 ± 1.2 kJ/mol. The thermodynamic parameters (ΔH*, ΔG*, and ΔS*) for the thermal deactivation of the purified laccase at a temperature range of 20–60 °C were: 73.8 ≤ ΔH* ≤ 74.3 kJ·mol−1, 98.7 ≤ ΔG* ≤ 101.9 kJ·mol−1, and −90.5 ≤ ΔS* ≤ −84.3 J·mol−1·K−1. Wine lees could be ideal substrates of fungal cultivation for laccase production and biomass with a high protein content in an eco-friendlier way.","PeriodicalId":100179,"journal":{"name":"Biomass","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138960875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomassPub Date : 2023-12-04DOI: 10.3390/biomass3040025
V. Athanasiadis, Theodoros G. Chatzimitakos, Eleni Bozinou, Konstantina Kotsou, D. Palaiogiannis, S. Lalas
{"title":"Maximizing the Extraction of Bioactive Compounds from Diospyros kaki Peel through the Use of a Pulsed Electric Field and Ultrasound Extraction","authors":"V. Athanasiadis, Theodoros G. Chatzimitakos, Eleni Bozinou, Konstantina Kotsou, D. Palaiogiannis, S. Lalas","doi":"10.3390/biomass3040025","DOIUrl":"https://doi.org/10.3390/biomass3040025","url":null,"abstract":"The persimmon fruit (Diospyros kaki Thunb.) is renowned for its exceptional health benefits, which can be attributed to its abundance of bioactive compounds. This study aimed to optimize the extraction of bioactive compounds from persimmon peel, an underexplored waste biomass, within the frame of sustainability and a circular economy. For this reason, a comprehensive multi-factor extraction approach was employed. Specifically, diverse methods including a pulsed electric field and ultrasonication combined with simple stirring were explored. Through this systematic approach, the most efficient extraction process was determined, resulting in elevated yields of bioactive compounds, including polyphenols, ascorbic acid, and total carotenoids. Among the identified phenolic compounds, rutin emerged as the most abundant, with concentrations reaching up to 172.86 μg/g. Utilizing partial least squares analysis, the maximum predicted values for the bioactive compounds were determined, with total polyphenols reaching 7.17 mg GAE/g, ascorbic acid at 4.93 mg/g, and total carotenoids at 386.47 μg CtE/g. The antioxidant activity of the extracts was evaluated with the ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, and H2O2 scavenging assays. The recorded antioxidant performance underscored the substantial potential of persimmon peels as a source of cost-effective extracts with high antioxidant activity. This study not only contributes to optimizing the bioactive compounds’ extraction from persimmon peel but also highlights the process’s viability by producing valuable extracts with antioxidant properties at low cost.","PeriodicalId":100179,"journal":{"name":"Biomass","volume":"18 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138601833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}