{"title":"The model theory of ‘R-formal’ fields","authors":"Bill Jacob","doi":"10.1016/0003-4843(80)90012-1","DOIUrl":"https://doi.org/10.1016/0003-4843(80)90012-1","url":null,"abstract":"<div><p>Let <em>K</em> be a field, and let <em>W</em>(<em>K</em>) denote its Witt ring of Quadratic Forms. It is well-known in the theory of Quadratic Forms that the orders of <em>K</em> correpond in a one to one way with all ring surjections <span><math><mtext>W(K) → </mtext><mtext>Z</mtext></math></span>. In particular, a field <em>L</em> is formally real over an ordered field <em>K</em> if and only if there is a homomorphism <span><math><mtext>ϕ</mtext><msub><mi></mi><mn>1</mn></msub><mtext>: W(L)→</mtext><mtext>Z</mtext></math></span> which extends the given ‘signature’ <span><math><mtext>ϕ</mtext><msub><mi></mi><mn>K</mn></msub><mtext>: W(K)→</mtext><mtext>Z</mtext></math></span>. (E.g. <span><math><mtext>ϕ</mtext><msub><mi></mi><mn>K</mn></msub><mtext> = ϕ</mtext><msub><mi></mi><mn>1</mn></msub><mtext>, i</mtext><msub><mi></mi><mn>∗</mn></msub><mtext>, </mtext><mtext>where</mtext><mtext> i</mtext><msub><mi></mi><mn>∗</mn></msub><mtext>: W(K)1 → W(L)</mtext></math></span> is the functinal map.)</p><p>Using the above, one may discuss the usual theory of formally real and real closed fields in terms of Witt rings, Knebusch in [6] has, in the above setting, given a remarkable new proof of the uniqueness of real closures. One might ask what happens when the <span><math><mtext>Z</mtext></math></span> above is replaced by some other ring <em>R</em>? That is the subject of this present note. In particular, we shall prove some algebraic and model theoretic analogues of well-known results for real closed fields, where the above <span><math><mtext>Z</mtext></math></span> is replaced by some finitely generated reduced Witt ring.</p></div>","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"19 3","pages":"Pages 263-282"},"PeriodicalIF":0.0,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(80)90012-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91721875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thin collections of sets of projective ordinals and analogs of L","authors":"Howard Becker","doi":"10.1016/0003-4843(80)90010-8","DOIUrl":"https://doi.org/10.1016/0003-4843(80)90010-8","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"19 3","pages":"Pages 205-241"},"PeriodicalIF":0.0,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(80)90010-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91721878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The model theory of ‘R-formal’ fields","authors":"B. Jacob","doi":"10.1016/0003-4843(80)90012-1","DOIUrl":"https://doi.org/10.1016/0003-4843(80)90012-1","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"15 1","pages":"263-282"},"PeriodicalIF":0.0,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81834189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the elementary theory of quadruples of vector spaces","authors":"Walter Baur","doi":"10.1016/0003-4843(80)90011-X","DOIUrl":"https://doi.org/10.1016/0003-4843(80)90011-X","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"19 3","pages":"Pages 243-262"},"PeriodicalIF":0.0,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(80)90011-X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91721877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Countable models of ω1-categorical theories in admissible languages","authors":"Henry A. Kierstead","doi":"10.1016/0003-4843(80)90023-6","DOIUrl":"10.1016/0003-4843(80)90023-6","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"19 1","pages":"Pages 127-175"},"PeriodicalIF":0.0,"publicationDate":"1980-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(80)90023-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88605392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interpretations of Heyting's arithmetic—An analysis by means of a language with set symbols","authors":"Martin Stein","doi":"10.1016/0003-4843(80)90018-2","DOIUrl":"10.1016/0003-4843(80)90018-2","url":null,"abstract":"<div><p>Well-known interpretations of Heyting's arithmetic of all finite types are the Diller-Nahm λ-interpretation [1] and Kreisel's modified realizability, subsequently called mr-interpretation [4]. For both interpretations one can define hybrids λ q resp. mq.</p><p>In Section 4 a chain of interpretations—called <strong>M</strong>-interpretations—is defined (it was introduced in [6], filling the “gap” between λ-interpretation and mr-interpretation.</p><p>In this paper it is shwon that it is possible to prove <em>in one stroke</em> the soundness resp. characterization theorems for <em>all</em> interpretations of HA<sub>ω 〈〉</sub> (Heyting's arithmetic of all finite types with functionals for coding finite sequences). This is done by means of interpretations of systems which contain set-symbols. For these so called <em>M</em>-interpretations, soundness-resp. characterization theorems can be proved simultaneously (Theorem 2.51. Special translations of set symbols and of the formula (<em>λωϵW</em>)<em>A</em> — this means, special decisions about the size of the set <em>W</em>; see Sections 3 and 4 — yield the corresponding results for all interpretations of HA<sub>ω〈〉</sub> mentioned.</p><p>The terminology of set theoretical language — we consider an extension of HA<sub>ω〈〉</sub> by an extensively weak fragment only, which leads to a conservative extension of HA<sub>ω〈〉</sub> — is of good use for studying realizing terms of different interpretations: if HA<sub><em>ω</em></sub><>⊢<em>A</em>, <em>A</em><sup><em>M</em></sup>∃<em>υ</em> ∀<em>w</em> <em>A</em><sub><em>M</em></sub>, and ⊢<em>A</em><sub><em>M</em></sub>[<em>t</em><sub><em>M</em></sub>, <em>w</em>] by soundness theorem for <em>M</em>-interpretations, there exists a simple operation which maps <span><math><mtext>v</mtext><mtext>̄</mtext><mtext> </mtext><mtext>to</mtext><mtext> </mtext><mtext>t</mtext><mtext>̄</mtext><msub><mi></mi><mn><mtext>mr</mtext></mn></msub></math></span>, the realizing term for modified realizability. For interpretations of Heyting's arithmetic — λ-interpretation. <strong>M</strong>-interpretations and mr-interpretation — this leads to the following stability result for existence theorems: if <span><math><mtext>∃λ A </mtext><mtext>and</mtext><mtext> t</mtext><msub><mi></mi><mn>^</mn></msub><mtext> </mtext><mtext>resp.</mtext><mtext> t</mtext><msub><mi></mi><mn><mtext>M</mtext><mtext>M</mtext></mn></msub></math></span> is the term computed by λ-interpretation. resp. <strong>M</strong>-interpretation, with <span><math><mtext>∃A[t</mtext><msub><mi></mi><mn><mtext>M</mtext></mn></msub><mtext>]</mtext></math></span>, then — using extensional equality and ω-rule for equations — we can prove that <span><math><mtext>t</mtext><msub><mi></mi><mn>λ</mn></msub><mtext> = t</mtext><msub><mi></mi><mn><mtext>M</mtext></mn></msub><mtext> = t</mtext><msub><mi></mi><mn><mtext>mr</mtext></mn></msub></math></span> (Section 5).</p></div>","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"19 1","pages":"Pages 1-31"},"PeriodicalIF":0.0,"publicationDate":"1980-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(80)90018-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87664539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Derived rules related to a constructive theory of metric spaces in intuitionistic higher order arithmetic without countable choice","authors":"Susumu Hayashi","doi":"10.1016/0003-4843(80)90019-4","DOIUrl":"10.1016/0003-4843(80)90019-4","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"19 1","pages":"Pages 33-65"},"PeriodicalIF":0.0,"publicationDate":"1980-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(80)90019-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73273096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Concerning the consistency of the Souslin hypothesis with the continuum hypothesis","authors":"Keith J. Devlin","doi":"10.1016/0003-4843(80)90022-4","DOIUrl":"10.1016/0003-4843(80)90022-4","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"19 1","pages":"Pages 115-125"},"PeriodicalIF":0.0,"publicationDate":"1980-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(80)90022-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77387719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}