“r -形式”场的模型理论

Bill Jacob
{"title":"“r -形式”场的模型理论","authors":"Bill Jacob","doi":"10.1016/0003-4843(80)90012-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>K</em> be a field, and let <em>W</em>(<em>K</em>) denote its Witt ring of Quadratic Forms. It is well-known in the theory of Quadratic Forms that the orders of <em>K</em> correpond in a one to one way with all ring surjections <span><math><mtext>W(K) → </mtext><mtext>Z</mtext></math></span>. In particular, a field <em>L</em> is formally real over an ordered field <em>K</em> if and only if there is a homomorphism <span><math><mtext>ϕ</mtext><msub><mi></mi><mn>1</mn></msub><mtext>: W(L)→</mtext><mtext>Z</mtext></math></span> which extends the given ‘signature’ <span><math><mtext>ϕ</mtext><msub><mi></mi><mn>K</mn></msub><mtext>: W(K)→</mtext><mtext>Z</mtext></math></span>. (E.g. <span><math><mtext>ϕ</mtext><msub><mi></mi><mn>K</mn></msub><mtext> = ϕ</mtext><msub><mi></mi><mn>1</mn></msub><mtext>, i</mtext><msub><mi></mi><mn>∗</mn></msub><mtext>, </mtext><mtext>where</mtext><mtext> i</mtext><msub><mi></mi><mn>∗</mn></msub><mtext>: W(K)1 → W(L)</mtext></math></span> is the functinal map.)</p><p>Using the above, one may discuss the usual theory of formally real and real closed fields in terms of Witt rings, Knebusch in [6] has, in the above setting, given a remarkable new proof of the uniqueness of real closures. One might ask what happens when the <span><math><mtext>Z</mtext></math></span> above is replaced by some other ring <em>R</em>? That is the subject of this present note. In particular, we shall prove some algebraic and model theoretic analogues of well-known results for real closed fields, where the above <span><math><mtext>Z</mtext></math></span> is replaced by some finitely generated reduced Witt ring.</p></div>","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"19 3","pages":"Pages 263-282"},"PeriodicalIF":0.0000,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(80)90012-1","citationCount":"1","resultStr":"{\"title\":\"The model theory of ‘R-formal’ fields\",\"authors\":\"Bill Jacob\",\"doi\":\"10.1016/0003-4843(80)90012-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>K</em> be a field, and let <em>W</em>(<em>K</em>) denote its Witt ring of Quadratic Forms. It is well-known in the theory of Quadratic Forms that the orders of <em>K</em> correpond in a one to one way with all ring surjections <span><math><mtext>W(K) → </mtext><mtext>Z</mtext></math></span>. In particular, a field <em>L</em> is formally real over an ordered field <em>K</em> if and only if there is a homomorphism <span><math><mtext>ϕ</mtext><msub><mi></mi><mn>1</mn></msub><mtext>: W(L)→</mtext><mtext>Z</mtext></math></span> which extends the given ‘signature’ <span><math><mtext>ϕ</mtext><msub><mi></mi><mn>K</mn></msub><mtext>: W(K)→</mtext><mtext>Z</mtext></math></span>. (E.g. <span><math><mtext>ϕ</mtext><msub><mi></mi><mn>K</mn></msub><mtext> = ϕ</mtext><msub><mi></mi><mn>1</mn></msub><mtext>, i</mtext><msub><mi></mi><mn>∗</mn></msub><mtext>, </mtext><mtext>where</mtext><mtext> i</mtext><msub><mi></mi><mn>∗</mn></msub><mtext>: W(K)1 → W(L)</mtext></math></span> is the functinal map.)</p><p>Using the above, one may discuss the usual theory of formally real and real closed fields in terms of Witt rings, Knebusch in [6] has, in the above setting, given a remarkable new proof of the uniqueness of real closures. One might ask what happens when the <span><math><mtext>Z</mtext></math></span> above is replaced by some other ring <em>R</em>? That is the subject of this present note. In particular, we shall prove some algebraic and model theoretic analogues of well-known results for real closed fields, where the above <span><math><mtext>Z</mtext></math></span> is replaced by some finitely generated reduced Witt ring.</p></div>\",\"PeriodicalId\":100093,\"journal\":{\"name\":\"Annals of Mathematical Logic\",\"volume\":\"19 3\",\"pages\":\"Pages 263-282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0003-4843(80)90012-1\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0003484380900121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0003484380900121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设K是一个域,设W(K)表示它的二次型威特环。众所周知,在二次型理论中,K的阶与所有的环上射W(K)→Z以一对一的方式对应。特别地,域L在有序域K上是形式实的,当且仅当存在一个扩展给定的“签名”的同态态(): W(L)→Z。(例如:K = 1, i *,其中i *: W(K)1→W(L)是函数映射。)在此基础上,我们可以讨论Witt环的形式实域和实闭域的一般理论,在此背景下,Knebusch在[6]中给出了实闭域唯一性的新证明。有人可能会问,当上面的Z被另一个环R取代时会发生什么?这就是本文的主题。特别地,我们将证明实闭场的一些已知结果的代数和模型理论类似,其中上面的Z被一些有限生成的约简Witt环所取代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The model theory of ‘R-formal’ fields

Let K be a field, and let W(K) denote its Witt ring of Quadratic Forms. It is well-known in the theory of Quadratic Forms that the orders of K correpond in a one to one way with all ring surjections W(K) → Z. In particular, a field L is formally real over an ordered field K if and only if there is a homomorphism ϕ1: W(L)→Z which extends the given ‘signature’ ϕK: W(K)→Z. (E.g. ϕK = ϕ1, i, where i: W(K)1 → W(L) is the functinal map.)

Using the above, one may discuss the usual theory of formally real and real closed fields in terms of Witt rings, Knebusch in [6] has, in the above setting, given a remarkable new proof of the uniqueness of real closures. One might ask what happens when the Z above is replaced by some other ring R? That is the subject of this present note. In particular, we shall prove some algebraic and model theoretic analogues of well-known results for real closed fields, where the above Z is replaced by some finitely generated reduced Witt ring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信