{"title":"Diurnal Valley Winds in a Deep Alpine Valley: Model Results","authors":"Juerg Schmidli, Julian Quimbayo-Duarte","doi":"10.3390/meteorology2010007","DOIUrl":"https://doi.org/10.3390/meteorology2010007","url":null,"abstract":"Thermally driven local winds are ubiquitous in deep Alpine valleys during fair weather conditions resulting in a unique wind climatology for any given valley. The accurate forecasting of these local wind systems is challenging, as they are the result of complex and multi-scale interactions. Even more so, if the aim is an accurate forecast of the winds from the near-surface to the free atmosphere, which can be considered a prerequisite for the accurate prediction of mountain weather. This study combines the evaluation of the simulated surface winds in several Alpine valleys with a more detailed evaluation of the wind evolution for a particular location in the Swiss Rhone valley, at the town of Sion during the month of September 2016. Four numerical simulations using the COSMO model are evaluated, two using a grid spacing of 1.1 km and two with a grid spacing of 550 m. For each resolution, one simulation is initialised with the soil moisture from the COSMO analysis and one with an increased soil moisture (+30%). In a first part, a comparison with observations from the operational measurement network of MeteoSwiss is used to evaluate the model performance, while, in a second part, data from a wind profiler stationed at Sion airport is used for a more detailed evaluation of the valley atmosphere near the town of Sion. The analysis focuses on 18 valley wind days observed in the Sion region in September 2016. Only the combination of an increased soil moisture and a finer grid spacing resulted in a significant improvement of the simulated flow patterns in the Sion region. This includes a stronger and more homogeneous along-valley wind in the Wallis and a more realistic cross-valley wind and temperature profile near the town of Sion. It is shown that the remaining differences between the observed and simulated near-surface wind are likely due to very local topographic features. Small-scale hills, not resolved on even the finer model grid, result in a constriction of the valley cross section and an acceleration of the observed low-level up-valley wind in the region of Sion.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88847928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Changes in the Seasonality of Fire Activity and Fire Weather in Portugal: Is the Wildfire Season Really Longer?","authors":"Pedro Silva, Miguel Carmo, João Rio, Ilda Novo","doi":"10.3390/meteorology2010006","DOIUrl":"https://doi.org/10.3390/meteorology2010006","url":null,"abstract":"The length of the fire season has not garnered much attention within the broad field of meteorological research on fire regime change. Fire weather research on the Iberian Peninsula is no exception in this case; there is no solid understanding on fire season lengthening in Portugal, although recent decades do suggest ongoing transitions. Based on a complete record of fire occurrence and burned area between 1980 and 2018, we first searched for consistent trends in the monthly distribution of fire activity. To determine day-scale changes, an exceedance date method based on annual cumulative burned area was developed. Results show an early onset of fire activity in a range of 23–50 days and no significant extension into autumn, suggesting that existing projections of the lengthening of the fire season in Portugal over the present century have been already achieved. Fire weather results show a trend in the cumulative Daily Severity Rating (DSR), with the last two decades (2000–2018) displaying an early build-up of meteorological fire danger in late spring and early summer. The detailed spatio-temporal analysis based on the daily Fire Weather Index (FWI) shows that June stands out with the largest increase (year-round) in days per month with an FWI above 38.3, the threshold above which fire conditions make suppression uncertain. This aggravated fire weather is likely sustaining early fire activity, thus contributing to a longer critical fire season.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"855 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80025007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acknowledgment to the Reviewers of Meteorology in 2022","authors":"","doi":"10.3390/meteorology2010005","DOIUrl":"https://doi.org/10.3390/meteorology2010005","url":null,"abstract":"High-quality academic publishing is built on rigorous peer review [...]","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82090622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Extreme Cold Surges in Hong Kong","authors":"Mandy Chong, H. Yeung, K. Hon","doi":"10.3390/meteorology2010004","DOIUrl":"https://doi.org/10.3390/meteorology2010004","url":null,"abstract":"Temperatures over Hong Kong have shown a marked increasing trend since the 1970s due to global warming and urbanization, but outbreaks of intense winter monsoon can bring very low temperatures in Hong Kong at times. This study aims at establishing criteria of extreme cold surges that suit the climatological characteristics of Hong Kong. Surges in this study were selected through percentile ranking of three weather attributes of each cold event: the lowest temperature, the largest temperature drop and the maximum sustained wind speed. Out of 152 cold events in 1991–2020, only four significant cold events in 1991, 1993, 2010 and 2016 met the most extreme 10th percentile of the three attributes concurrently and could be classified operationally as “extreme cold surge”. Very cold temperatures (at or below 7.0 °C), a temperature drop of at least 8.0 °C in two days and gale force wind speed (at or above 17.5 m/s) were recorded in all four surges. The results of classification are illustrated by selected cases. As ensemble products of some numerical weather prediction models tend to have a stable indication of extremity of cold events, the potential applications of cross-referencing the forecast and actual extremity in operational forecasting are also discussed.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76103278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of Air Mass Advection on the Amount of Global Solar Radiation Reaching the Earth’s Surface in Poland, Based on the Analysis of Backward Trajectories (1986–2015)","authors":"K. Kulesza","doi":"10.3390/meteorology2010003","DOIUrl":"https://doi.org/10.3390/meteorology2010003","url":null,"abstract":"The paper aims to analyse the relationship between the amount of global solar radiation (GSR) reaching the Earth’s surface in Poland and the direction of air mass advection, using 72-h backward trajectories (1986–2015). The study determined average daily sums of GSR related to groups of trajectories with certain similarities in shape. It was found that the average daily sums of GSR during air mass inflow from all the directions (clusters) identified were significantly different from the average daily sum in the multi-year period. A significant increase in the amount of GSR over Poland is accompanied by air mass inflow from the north and east. The frequency of these advection directions is 27% of all days. The western directions of advection prompt different GSR sums: from slightly increased during advection from the north-west, to significantly decreased during advection from the west (from the central and western part of the North Atlantic). Special attention was given to days with extremely large (above the 0.95 percentile) and with the largest (above the 0.99 percentile) GSR sums. These are prompted by two main types of synoptic conditions: the Azores High ridge covering Central and Southern Europe; and the high-pressure areas which appear in Northern and Central Europe.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"91 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85228386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating Possible Changes in Air Temperature and Precipitation Patterns in Mozambique by Comparing Present and Future RegCM4 Simulation","authors":"T. Sumila, S. Ferraz, Angelica Durigon","doi":"10.3390/meteorology2010002","DOIUrl":"https://doi.org/10.3390/meteorology2010002","url":null,"abstract":"Unlike global and regional assessments, the spatio-temporal variability of air temperature and precipitation, caused by climate change, must be more useful when the assessment is made at the sub-regional to local scale. Thus, this study aims to assess the possible changes in air temperature and precipitation in patterns for the late 21st century relative to the present climate in Mozambique. The regional model, RegCM4, driven by the global model HadGEM2, was used to perform the downscaling process under two Representative Concentration Pathways (RCPs), moderate RCP4.5 and strong RCP8.5. The three experiments were analyzed in the baseline (1971–2000) and future (2070−2099) range at the subregional scale in Mozambique. In this study domain, the highest amounts of precipitation and the highest air temperatures are observed during the extended summer season. However, the central region is rather warmer and rainier than the northern- and southernmost regions. Hence, the regional model RegCM4 demonstrated agreement relative to the observed weather stations and interpolated dataset from the Climate Research Unit. The strong performance of RegCM4 is revealed by its more realistic local spatio-temporal climate features, tied to the topography and geographical location of the study domain. The future increases in mean annual air temperature are well simulated by the model but, the spatial distribution and magnitude differ between the RCPs and over each of the three regions throughout the country. The sharp hottest response at the end of 21st century occurs in the summer and spring seasons under RCP8.5, spatially over the central and northern region of the study domain, with a hot-spot in the southern region. There is a predominantly drier response in the annual mean precipitation but, during the summer season, a meridional dipolarization pattern is observed, with the wettest response being over the southernmost region and a drier response in the northern and central regions of Mozambique.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84681609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renata Barros Vasconcelos Leirias, N. Fedorova, V. Levit
{"title":"Airplane Emergency Landing Due to Quick Development of Mesoscale Convective Complexes","authors":"Renata Barros Vasconcelos Leirias, N. Fedorova, V. Levit","doi":"10.3390/meteorology2010001","DOIUrl":"https://doi.org/10.3390/meteorology2010001","url":null,"abstract":"Some meteorological phenomena in South America develop quickly and take on large dimensions. These phenomena cause disasters for aviation, such as incidents and accidents. Mesoscale convective complexes (MCCs) forced a commercial airplane into an emergency landing at Ezeiza International Airport in Buenos Aires (Argentina) in October 2018. The airplane took off from São Paulo (Brazil) to Santiago (Chile) and had to alternate to Ezeiza after encountering unanticipated agglomerations of MCCs along the flight route; its structure was seriously damaged, which affected the safety of the flight. A synoptic and thermodynamic analysis of the atmosphere, prior to the event, was made based on GOES16 infrared satellite data, radiosonde data, maps of several variables such as stream lines, temperature advection, surface synoptic maps and layer thickness from CPTEC/INPE and NCEP reanalysis data. The main observed processes that influenced the formation and development of conglomerates of MCCs were the following: (1) the cyclogenesis of a baroclinic cyclone on the cold front; (2) the coupling of subtropical and polar jet streams; (3) the advection of warm and humid air along a low-level jet stream. Recommendations for meteorologists in weather forecasting and for aviators in flight safety were prepared.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"182 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83021785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of Adaptively Thinned GOES-16 Cloud Water Path in an Ensemble Data Assimilation System","authors":"S. Mallick","doi":"10.3390/meteorology1040032","DOIUrl":"https://doi.org/10.3390/meteorology1040032","url":null,"abstract":"Assimilation of cloud properties in the convective scale ensemble data assimilation system is one of the prime topics of research in recent years. Satellites can retrieve cloud properties that are important sources of information of the cloud and atmospheric state. The Advance Baseline Imager (ABI) aboard the GOES-16 geostationary satellite brings an opportunity for retrieving high spatiotemporal resolution cloud properties, including cloud water path over continental United States. This study investigates the potential impacts of assimilating adaptively thinned GOES-16 cloud water path (CWP) observations that are assimilated by the ensemble-based Warn-on-Forecast System and the impact on subsequent weather forecasts. In this study, for CWP assimilation, multiple algorithms have been developed and tested using the adaptive-based thinning method. Three severe weather events are considered that occurred on 19 July 2019, 7 May and 21 June 2020. The superobbing procedure used for CWP data smoothed from 5 to 15 km or more depending on thinning algorithm. The overall performance of adaptively thinned CWP assimilation in the Warn-on-Forecast system is assessed using an object-based verification method. On average, more than 60% of the data was reduced and therefore not used in the assimilation system. Results suggest that assimilating less than 40% of CWP superobbing data into the Warn-on-Forecast system is of similar forecast quality to those obtained from assimilating all available CWP observations. The results of this study can be used on the benefits of cloud assimilation to improve numerical simulation.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89543292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moses B. Farr, James V. Gasch, Evan J. Travis, Sarah M. Weaver, V. Yavuz, I. Semenova, O. Panasiuk, A. Lupo
{"title":"An Analysis of the Synoptic Dynamic and Hydrologic Character of the Black Sea Cyclone Falchion","authors":"Moses B. Farr, James V. Gasch, Evan J. Travis, Sarah M. Weaver, V. Yavuz, I. Semenova, O. Panasiuk, A. Lupo","doi":"10.3390/meteorology1040031","DOIUrl":"https://doi.org/10.3390/meteorology1040031","url":null,"abstract":"In the Mediterranean and occasionally in the Black Sea, low-pressure systems with the character of both mid-latitude and tropical cyclones can form. These hybrid storms are called subtropical storms, subtropical depressions, medistorms/medicanes, or tropical-like cyclones (TLC). A strong low-pressure system given the name Falchion developed in northern part of the Black Sea during 11–20 August 2021. This storm was blamed for damage and more than 30 casualties in the nations bordering the region. At peak intensity, this storm was a as strong as a tropical depression. Falchion developed and moved northeast, reaching peak intensity before becoming nearly stationary. The NCEP reanalyses and satellite data obtained from Eumetsat’s geostationary satellite, Meteosat-8, were used to examine the character of the storm. This study demonstrates that the movement of Falchion was impeded by a blocking event that occurred over central Asia during much of August 2021. The storm did share characteristics with tropical systems, but a comparison of Falchion to tropical depressions and subtropical storms in the North and South Atlantic demonstrated that this storm was more consistent with these types of storms when examining the storm and the proximal environment. This included an examination of integrated water vapor (IVT) plumes, and the plume associated with Falchion did rise to the character of an atmospheric river in spite of the smaller scale.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"137 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76774182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heat Waves Amplify the Urban Canopy Heat Island in Brno, Czechia","authors":"Zdeněk Janků, P. Dobrovolný","doi":"10.3390/meteorology1040030","DOIUrl":"https://doi.org/10.3390/meteorology1040030","url":null,"abstract":"This study used homogenised mean, maximum, and minimum daily temperatures from 12 stations located in Brno, Czechia, during the 2011–2020 period to analyse heat waves (HW) and their impact on the canopy urban heat island (UHI). HWs were recognized as at least three consecutive days with Tx ≥ 30 °C and urban–rural and intra-urban differences in their measures were analysed. To express the HWs contribution to UHI, we calculated the UHI intensities (UHII) separately during and outside of HWs to determine the heat magnitude (HM). Our results show that all HW measures are significantly higher in urban areas. UHII is mostly positive, on average 0.65 °C; however, day-time UHII is clearly greater (1.93 °C). Furthermore, day-time UHII is amplified during HWs, since HM is on average almost 0.5 °C and in LCZ 2 it is even 0.9 °C. Land use parameters correlate well with UHII and HM at night, but not during the day, indicating that other factors can affect the air temperature extremity. Considering a long-term context, the air temperature extremity has been significantly increasing recently in the region, together with a higher frequency of circulation types that favour the occurrence of HWs, and the last decade mainly contributed to this increase.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83742670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}