{"title":"Interfacial properties of whey protein hydrolysates monitored by quartz crystal microbalance with dissipation.","authors":"Yueling Tian, Manyan Qiu, Yu Shen, Yaping Zheng, Xinyan Yang, Wei Zhang, Yujun Jiang","doi":"10.1016/j.ijbiomac.2025.140368","DOIUrl":"10.1016/j.ijbiomac.2025.140368","url":null,"abstract":"<p><p>Whey protein hydrolysate (WPH) can be used to develop hypoallergenic foods. However, the stabilization mechanism of WPH-stabilized emulsion is not fully understood. Here, a real-time quartz crystal microbalance with dissipation monitoring (QCM-D) was used in conjunction with a rheometer to investigate the interfacial properties of WPH. Initially, the properties of WPH with different (6 %, 8 %, 10 %, 12 % and 14 %) degree of hydrolysis (DH) were investigated. 8 %-WPH demonstrated superior emulsifying (11.49 m<sup>2</sup>/g, 81.34 min) and foaming properties (14.00 %, 7.78 %). Subsequently, the stability of different WPH-stabilized emulsions were examined. 8 %-WPH emulsion exhibited the lowest centrifugal precipitation rate (4.50 %) and Turbiscan stability index (2.24). Additionally, the 8 %-WPH promoted the adsorption and retention of molecules at the interface, which effectively reduced the interfacial tension. QCM-D measurement further proved that the 8 %-WPH possessed excellent adsorption mass and viscoelasticity. Finally, we characterized the interface-adsorbed WPH. The 8 %-WPH exhibited the highest surface hydrophobicity (1072.60) and flexibility (0.22). Notably, the 8 %-WPH showed the highest β-sheet (41.11 %). This led to stronger interactions between neighboring interfacial WPH molecules, which protected the emulsion droplets from destabilizing factors. Nevertheless, excessive hydrolysis (10 %-14 %) caused WPH molecules aggregation, which consequently diminished the viscoelasticity of the interfacial film and the emulsion stability.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140368"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pretreatment of enzymatic hydrolysis lignin based on deep eutectic solvent containing a reversibly-soluble base.","authors":"Hui-Jun Liu, Da-Yu Sun, Lei Yang, Guang-Hui Ma, Rong-Ying Xia, Zi-Qi Wang, Ming-Zhu Yao, Li-Jing Gao, Rui-Ping Wei, Xiao-Mei Pan, Guo-Min Xiao","doi":"10.1016/j.ijbiomac.2025.140452","DOIUrl":"10.1016/j.ijbiomac.2025.140452","url":null,"abstract":"<p><p>The pretreatment with green deep eutectic solvents (DESs) is conducive to realizing the high-efficiency utilization of lignin at a low cost. In this study, an innovative choline chloride/urea/calcium hydroxide (ChCl/UR/Ca(OH)<sub>2</sub>) DES containing a reversibly-soluble base Ca(OH)<sub>2</sub> was developed for the pretreatment of enzymatic hydrolysis lignin (EHL). The lignin pretreatment effects of the proposed ChCl/UR/Ca(OH)<sub>2</sub> DES were compare with a series of DESs. The results indicated that ChCl/UR/20 % Ca(OH)<sub>2</sub> with a reversibly-soluble base addition of 20 % was permitted to achieve the optimal recovery yield of 81.067 % under mild conditions (80 °C, 7 h). The physical and chemical structure, molecular weight, thermal stability, content of phenolic hydroxyl and carboxyl groups, and recycling performance of DES were compared between ChCl/UR-L and ChCl/UR/20 % Ca(OH)<sub>2</sub>-L. The results showed that ChCl/UR/20 % Ca(OH)<sub>2</sub>-L retained the lignin skeleton structure and possessed preferable thermal stability and antioxidant activity, which was mainly attributed to the homogeneous molecular structure and abundant phenolic hydroxyl group contents. ChCl/UR/20 % Ca(OH)<sub>2</sub> was more advantageous for recycling, maintaining a lignin recovery yield of 57.400 % after 5 cycles, which was higher than that of most acidic and neutral DESs for regenerating lignin. This work provides a valuable reference on the valorization of lignin by using renewable DES.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140452"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of isolation methods on physicochemical properties of defatted starch from the acorn (Quercus brantii).","authors":"Sepideh Erfan, Roya Abka-Khajouei, Javad Keramat, Nasser Hamdami","doi":"10.1016/j.ijbiomac.2025.140300","DOIUrl":"10.1016/j.ijbiomac.2025.140300","url":null,"abstract":"<p><p>This study explores the innovative combined effects of alkaline isolation with ultrasound pretreatment on the physicochemical properties of acorn (Quercus brantii) starch. The optimal pH for maximizing the yield of alkaline-isolated acorn starch (AAS) was determined, followed by comparison with alkaline-isolated defatted acorn starch (ADAS), ultrasound-pretreated acorn starch (UAS), and ultrasound-pretreated defatted acorn starch (UDAS). The results demonstrated substantial improvements in yield and purity, with the highest yield (68.97 ± 0.16 %) achieved at pH 9. ADAS showed high purity, with protein and fat contents of 1.82 ± 0.07 % and 0.025 ± 0.02 %, respectively. UDAS exhibited superior swelling power, solubility, and turbidity, indicating enhanced functional properties. Scanning Electron Microscopy (SEM) revealed variations in granule sizes across treatments, from 12.42 μm (ADAS) to 10.72 μm (UDAS). X-ray diffraction analysis showed C-type patterns with crystallinity ranging from 31.25 % (ADAS) to 26 % (UAS). Thermal analysis demonstrated UDAS had the highest peak viscosity and lowest thermal parameters. Texture analysis indicated that AAS formed a softer gel, while ADAS displayed greater hardness and gumminess. These findings highlight the effectiveness of combining alkaline isolation with ultrasound pretreatment to improve acorn starch quality for sustainable applications in food and biotechnology.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140300"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Label-free electrochemical immunoassay for ultra-sensitive detection of PSA utilizing gold nanoparticles/polyhedral hollow CoCu bimetallic sulfide nanostructure as a dual signal amplification platform.","authors":"Mozhgan Shohani, Marzieh Sadeghi, Hosna Ehzari","doi":"10.1016/j.ijbiomac.2025.140307","DOIUrl":"10.1016/j.ijbiomac.2025.140307","url":null,"abstract":"<p><p>This study introduces the development of a highly sensitive label-free electrochemical immunosensor specifically designed to detect prostate-specific antigen (PSA). A glassy carbon electrode (GCE) coated with Au nanoparticles/polyhedral hollow CoCu bimetallic sulfide (CuCo<sub>2</sub>S<sub>4</sub>) was employed as a sensing interface for the fixation of the monoclonal anti-PSA antibody. The nanoarchitectures enhanced the capacity for loading prostate-specific antibodies (Ab) and effectually boosted electrical conductivity leading to enhance the electrochemical signal and greater sensitivity for the detection of PSA. The electrochemical behavior of the engineered sensor was researched via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The response of the fabricated immunosensor manifested a linearized correlation with PSA concentration, spanning from 50.0 fg/ml to 500.0 ng/ml, with a minimal detection limit (DPV: 19.0 fg/ml, EIS: 14.0 fg/ml) and superior stability. The morphological and structural features of the engineered nanomaterials were analyzed using a range of techniques, including field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The proposed immunosensor was utilized for the meticulous and ultra-sensitive analysis of PSA levels in serum specimens, providing results that align satisfactorily with those from the enzyme-linked immunosorbent assay (ELISA) the benchmark protocol. In conclusion, these outcomes underscore the potential utility of the developed immunosensor for prostate cancer screening in its initial stages.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140307"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PmiProPred: A novel method towards plant miRNA promoter prediction based on CNN-Transformer network and convolutional block attention mechanism.","authors":"Haibin Li, Jun Meng, Zhaowei Wang, Yushi Luan","doi":"10.1016/j.ijbiomac.2025.140630","DOIUrl":"10.1016/j.ijbiomac.2025.140630","url":null,"abstract":"<p><p>It is crucial to understand the transcription mechanisms of miRNAs, especially considering the presence of peptides encoded by miRNAs. Since promoters function as the switch for gene transcription, precisely identifying these regions is essential for fully annotating miRNA transcripts. Nonetheless, existing computational methods still have room for improvement in the characterization of promoter regions. Here, we present PmiProPred, an advanced tool designed for predicting plant miRNA promoters from a wide spectrum of genomes. It consists of two core components: multi-stream deep feature extraction (MsDFE) and multi-stream deep feature refinement (MsDFR). The MsDFE utilizes Transformer and CNN to gather multi-view features, while the MsDFR focuses on aligning and refining them using channel and spatial attention mechanisms. Ultimately, a multi-layer perceptron is employed to accomplish the miRNA promoter identification task. Across three independent testing datasets, PmiProPred achieves accuracies of 94.630%, 96.659%, and 92.480%, respectively, substantially surpassing the latest methods. Additionally, PmiProPred is employed to identify potential core promoters in the upstream 2-kb regions of intergenic miRNAs in five plant species. We further conduct cis-regulatory elements mining on the predicted promoters and perform an in-depth analysis of the identified motifs. Altogether, PmiProPred is a robust and effective tool for discovering plant miRNA promoters.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140630"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Wang, Yaotian Yan, Bin Qin, Zhenyu Ye, Yong Xia, Zilong Zhang, Xiaohang Zheng, Jian Cao, Junlei Qi
{"title":"In-situ growing carbon nanotubes reinforced highly heat dissipative three-dimensional aluminum framework composites.","authors":"Bin Wang, Yaotian Yan, Bin Qin, Zhenyu Ye, Yong Xia, Zilong Zhang, Xiaohang Zheng, Jian Cao, Junlei Qi","doi":"10.1016/j.jcis.2024.12.125","DOIUrl":"10.1016/j.jcis.2024.12.125","url":null,"abstract":"<p><p>The demand for lightweight heat dissipation design in highly miniaturized and portable electronic devices with high thermal density is becoming increasingly urgent. Herein, highly thermal conductive carbon nanotubes (CNTs) reinforced aluminum foam composites were prepared by catalyst chemical bath and subsequent in-situ growth approach. The dense CNTs show the intertwined structure features and construct high-speed channels near the surface of the skeletons for efficient thermal conduction, promoting the transport efficiency of heat flow. The regulation of the process leads to a proportion increase in the (1 1 0) crystal plane of the aluminum substrate. The calculation results of non-equilibrium molecular dynamics (NEMD) demonstrate that (1 1 0) crystal plane is conducive to enhancing thermal boundary conductance thus the desirable equivalent thermal conductivity is obtained in the model system. Moreover, the phonon behaviors at the heterointerface observed in phonon density of states spectrums (PDOS) show that the interface system with (1 1 0) crystal plane possesses the superior coupling effect suggesting the brilliant transmission capacity. The theoretical results of NEMD and PDOS provide a microscopic explanation for the high thermal conductivity observed in the prepared composites with a high content of Al (1 1 0) crystal plane. The composites exhibit a thermal conductivity of 30.63 W·m<sup>-1</sup>·K<sup>-1</sup>, improved by ∼300 % as compared to unmodified aluminum foam. The cooling efficiency of 28.63 % obtained in the composites indicates outstanding heat dissipative performance among other similar works. The composites prepared in the work could hold bright prospects for the thermal management field.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"799-817"},"PeriodicalIF":9.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interfacial hydrogen bonds induced by porous FeCr bimetallic atomic sites for efficient oxygen reduction reaction.","authors":"Jingwen Wang, Qing Zhang, Lin Yang, Chuangang Hu, Zhengyu Bai, Zhongwei Chen","doi":"10.1016/j.jcis.2024.12.119","DOIUrl":"10.1016/j.jcis.2024.12.119","url":null,"abstract":"<p><p>Interfacial hydrogen bonds are pivotal in enhancing proton activity and accelerating the kinetics of proton-coupled electron transfer during electrocatalytic oxygen reduction reaction (ORR). Here we propose a novel FeCr bimetallic atomic sites catalyst supported on a honeycomb-like porous carbon layer, designed to optimize the microenvironment for efficient electrocatalytic ORR through the induction of interfacial hydrogen bonds. Characterizations, including X-ray absorption spectroscopy and in situ infrared spectroscopy, disclose the rearrangement of delocalized electrons due to the formation of FeCr sites, which facilitates the dissociation of interfacial water molecules and the subsequent formation of hydrogen bonds. This process significantly accelerates the proton-coupled electron transfer process and enhances the ORR reaction kinetics. As a result, the catalyst FeCrNC achieves a remarkable half-wave potential of 0.92 V and exhibits superior four-electron selectivity in 0.1 M KOH solution. Moreover, the zinc-air battery assembled by FeCrNC demonstrates a high power density of 207 mW cm<sup>-2</sup> and negligible degradation over 240 h at a current density of 10 mA cm<sup>-2</sup>.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"742-751"},"PeriodicalIF":9.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the photothermal effect in the photocatalytic water splitting over Type II ZnIn<sub>2</sub>S<sub>4</sub>/CoFe<sub>2</sub>S<sub>4</sub> composites.","authors":"Gege He, Junsheng Wang, Xiaozhen Lv, Shun Lu","doi":"10.1016/j.jcis.2024.12.137","DOIUrl":"10.1016/j.jcis.2024.12.137","url":null,"abstract":"<p><p>Hydrogen is increasingly acknowledged as a viable alternative to traditional fossil fuels. However, the photothermal properties of CoFe<sub>2</sub>S<sub>4</sub>, a photocatalyst displaying metal-like behavior, have not been adequately explored in the context of photocatalytic H<sub>2</sub> generation. To improve photocatalytic hydrogen evolution, it is crucial to understand how to expedite the transfer of photogenerated electrons and the dissociation of H-OH bonds for enhanced hydrogen ion release. Herein, a type-II heterostructure was constructed between CoFe<sub>2</sub>S<sub>4</sub> nanosheets and ZnIn<sub>2</sub>S<sub>4</sub> nanoparticles, a non-precious metal photocatalyst, which effectively separates photogenerated carriers and holes. More importantly, the photothermal effect and localized surface plasmon resonance (LSPR) effects induced by CoFe<sub>2</sub>S<sub>4</sub> improved the sluggish kinetics of water dissociation. The CoFe<sub>2</sub>S<sub>4</sub>/ZnIn<sub>2</sub>S<sub>4</sub>-5 photocatalyst achieved H<sub>2</sub> evolution rate of 6.84 mmol·g<sup>-1</sup>·h<sup>-1</sup>, and an apparent quantum efficiency of 15.6 % at 400 nm, significantly enhancing the efficiency of photocatalytic splitting for hydrogen production. This work advances the application of metal CoFe<sub>2</sub>S<sub>4</sub> in solar-to-fuel conversion and offers valuable insights for designing semiconductor-based photothermally assisted photocatalytic systems.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"901-909"},"PeriodicalIF":9.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-04-01Epub Date: 2024-12-19DOI: 10.1016/j.talanta.2024.127411
Yanyan Shao, Qian Tao, Luyao Shao, Jing Bi, Qian Wang, Zhigang Wang, Xuan Sun
{"title":"Defective UIO66 metal-organic framework nanoparticles assisted by cascade isothermal amplification technology for the detection of aflatoxin B1.","authors":"Yanyan Shao, Qian Tao, Luyao Shao, Jing Bi, Qian Wang, Zhigang Wang, Xuan Sun","doi":"10.1016/j.talanta.2024.127411","DOIUrl":"10.1016/j.talanta.2024.127411","url":null,"abstract":"<p><p>Aflatoxin B1 (AFB1) exhibits significant toxicity and pose a serious threat to food safety, environmental hygiene, and public health even in trace amounts. Hence, the development of a rapid, accurate, and sensitive detection technology has become a pivotal aspect of ensuring control standards. In this study, we introduce the UIO66 and two defective dichloroacetic acid@UIO66 (DCA@UIO66, DU) metal-organic framework nanoparticles, named DU1 and DU2, characterized by different defect levels. It is noteworthy that DU1 exhibits superior DNA sensing capability compared to UIO66 and DU2. With a fluorescence quenching efficiency of 92.66 % and a recovery efficiency of 1256.75 %, DU1 demonstrates the substantial potential in the detection field. Furthermore, we employ cascade isothermal amplification to assist DU1-mediated fluorescence sensors in detecting AFB1. AFB1 is efficiently identified through an aptamer competition process facilitated by magnetic nanoparticles, which initiates the exponential amplification triggered rolling circle amplification reaction, and converts trace amounts of toxin signal into a large number of long single-stranded DNA molecules. Upon recognition of the amplification product by the fluorescent probe on DU1, a more stable double-stranded DNA is formed and leaves the surface of DU1, leading to a significant change in fluorescence intensity. This method exhibits acceptable sensitivity, with a detection limit of 0.09 pg mL<sup>-1</sup> and a wide detection range spanning from 0.2 pg mL<sup>-1</sup> to 20 pg mL<sup>-1</sup>. Additionally, this assay exhibits satisfactory specificity and high accuracy in practical sample applications. Our proposed method offers a solid theoretical framework and technical backing, thereby facilitating the establishment of a new generation of mycotoxin detection standards.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127411"},"PeriodicalIF":5.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-04-01Epub Date: 2024-12-13DOI: 10.1016/j.talanta.2024.127374
Fengyi Lin, Yuxin Cheng, Min Li, Zhi Li, Jianyuan Dai
{"title":"Detection of uranyl ions by single-hairpin based self-hybridization chain reaction.","authors":"Fengyi Lin, Yuxin Cheng, Min Li, Zhi Li, Jianyuan Dai","doi":"10.1016/j.talanta.2024.127374","DOIUrl":"10.1016/j.talanta.2024.127374","url":null,"abstract":"<p><p>Uranium is a toxic radionuclide, and its most stable and common ionic form is water-soluble uranyl ions (UO<sub>2</sub><sup>2+</sup>), which migrates into the environment easily and causes adverse effects on environment and human health. Herein, by cleverly designing the stem of DNA hairpin with palindromic sequence, a self-hybridization chain reaction (SHCR) system was developed for sensitive UO<sub>2</sub><sup>2+</sup> detection. This detection system showed a good linear correlation between the ratio of fluorescence intensities and UO<sub>2</sub><sup>2+</sup> concentration within the range of 0.05 nM-20 nM, and the detection limit was calculated to be 0.017 nM. Unlike the traditional HCR system which involves two hairpins, this proposed SHCR system only needs one DNA hairpin, which reduces the complexity of sequence design and experimental operation. And it can be used for the detection of other non-nucleic acid targets by simply changing the target molecule recognition module.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127374"},"PeriodicalIF":5.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}