Cellular signalling最新文献

筛选
英文 中文
PDGFRB promotes dedifferentiation and pulmonary metastasis through rearrangement of cytoskeleton under hypoxic microenvironment in osteosarcoma. 在骨肉瘤缺氧微环境下,PDGFRB通过重排细胞骨架促进去分化和肺转移。
IF 4.4 2区 生物学
Cellular signalling Pub Date : 2024-11-04 DOI: 10.1016/j.cellsig.2024.111501
Enjie Xu, Zhen Huang, Kunpeng Zhu, Jianping Hu, Xiaolong Ma, Yongjie Wang, Jiazhuang Zhu, Chunlin Zhang
{"title":"PDGFRB promotes dedifferentiation and pulmonary metastasis through rearrangement of cytoskeleton under hypoxic microenvironment in osteosarcoma.","authors":"Enjie Xu, Zhen Huang, Kunpeng Zhu, Jianping Hu, Xiaolong Ma, Yongjie Wang, Jiazhuang Zhu, Chunlin Zhang","doi":"10.1016/j.cellsig.2024.111501","DOIUrl":"10.1016/j.cellsig.2024.111501","url":null,"abstract":"<p><strong>Background: </strong>Osteosarcoma (OS) cells commonly suffer from hypoxia and dedifferentiation, resulting in poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated cellular signaling.</p><p><strong>Methods: </strong>We performed sphere formation assays and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and detected the expression of PDGFRB, p-PDGFRB, focal adhesion kinase (FAK), p-FAK, phosphorylated myosin light chain 2 (p-MLC2), and ras homolog family member A (RhoA) in each group. The effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS cell metastasis both in vitro and in vivo.</p><p><strong>Results: </strong>Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A upregulated PDGFRB, subsequently activated RhoA, and increased the phosphorylation of MLC2. PDGFRB also enhanced the phosphorylation of FAK. The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB promoted cell dedifferentiation and had a significant impact on the migration and invasion abilities of OS cells in vitro. In addition, PDGFRB increased pulmonary metastasis of OS cells in vivo.</p><p><strong>Conclusion: </strong>Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton, a process likely linked to the activation of RhoA and the phosphorylation of, thereby promoting OS dedifferentiation and pulmonary metastasis.</p>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperlipidemia exacerbates acute pancreatitis via interactions between P38MAPK and oxidative stress. 高脂血症通过 P38MAPK 和氧化应激之间的相互作用加剧急性胰腺炎。
IF 4.4 2区 生物学
Cellular signalling Pub Date : 2024-11-04 DOI: 10.1016/j.cellsig.2024.111504
Minhao Qiu, Yining Huang, Xiaoying Zhou, Junyu Yu, Jianmin Li, Wei Wang, Maddalena Zippi, Sirio Fiorino, Wandong Hong
{"title":"Hyperlipidemia exacerbates acute pancreatitis via interactions between P38MAPK and oxidative stress.","authors":"Minhao Qiu, Yining Huang, Xiaoying Zhou, Junyu Yu, Jianmin Li, Wei Wang, Maddalena Zippi, Sirio Fiorino, Wandong Hong","doi":"10.1016/j.cellsig.2024.111504","DOIUrl":"10.1016/j.cellsig.2024.111504","url":null,"abstract":"<p><strong>Background: </strong>The mechanisms involved in the hyperlipidemia-associated acute pancreatitis (HLAP) is not yet fully understood.</p><p><strong>Aims: </strong>To investigate the role of P38MAPK (mitogen-activated protein kinases) and oxidative stress in the pathogenesis of HLAP.</p><p><strong>Methods: </strong>In AP (acute pancreatitis) patients, the GEO database retrieved gene expression profiles of cytokines, MAPK14, nuclear factor kappa B subunit 1 (NF-κB 1) and superoxide dismutase 2 (SOD 2). GeneMANIA has been used for the prediction of potential interaction mechanisms. Validation was carried out using an experimental AP model and a bi-directional Mendelian randomization (MR) analysis.</p><p><strong>Results: </strong>Compared to mild AP, patients with severe AP had higher gene expression of MAPK14, NF-κB1, SOD2, IL-1β and IL-6R. GeneMANIA revealed 77.6 % physical interactions among MAPK14, NF-κB1, SOD2, IL-1β and IL-6R. Our results indicated that HLAP group had a more severe pancreatic injury, a stronger inflammatory response with higher serum levels of TNF-α, IL-6 and IL-1β in comparison with the AP group, which were significantly mitigated in HLAP-Pi group. Furthermore, SB 203580 inhibited increasing levels of malondialdehyde (MDA) in serum and of inducible nitric oxide synthase (iNOS), P38MAPK, p-P38MAPK and NF-κB p65 in pancreatic tissue as well as decreasing serum values of SOD and GSH-PX in HLAP group. MR analysis suggested that MAPK14 levels were negatively associated with the SOD levels, by using the inverse variance weighted (IVW) method (b = -0.193: se = 0.225; P = 1.03e-17). Reverse MR analysis indicated that SOD was negatively associated with the MAPK14 levels in the IVW analysis (b = -0.163: se = 0.020; P = 1.38e-15).</p><p><strong>Conclusion: </strong>Interactions between P38MAPK and oxidative stress may play an important role in the pathogenesis of HLAP.</p>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The emerging role of PANoptosis in viral infections disease 泛凋亡在病毒感染疾病中的新作用。
IF 4.4 2区 生物学
Cellular signalling Pub Date : 2024-11-01 DOI: 10.1016/j.cellsig.2024.111497
{"title":"The emerging role of PANoptosis in viral infections disease","authors":"","doi":"10.1016/j.cellsig.2024.111497","DOIUrl":"10.1016/j.cellsig.2024.111497","url":null,"abstract":"<div><div>PANoptosis is a distinct inflammatory cell death mechanism that involves interactions between pyroptosis, apoptosis, and necroptosis. It can be regulated by diverse PANoptosome complexes built by integrating components from various cell death modalities. There is a rising interest in PANoptosis' process and functions. Viral infection is an important trigger of PANoptosis. Viruses invade host cells through their unique mechanisms and utilize host cell resources for replication and proliferation. In this process, viruses interfere with the normal physiological functions of host cells, including cell death mechanisms. A variety of viruses, such as influenza A virus (IAV), herpes simplex virus 1 (HSV1) and coronaviruses, have been found to induce PANoptosis in host cells. Given the importance of PANoptosis across the disease spectrum, this review briefly describes the relationships between pyroptosis, apoptosis, and necroptosis, highlights the key molecules in PANoptosome formation and activation, and outlines the multifaceted roles of PANoptosis in viral diseases, including potential therapeutic targets. We also talk about key principles and significant concerns for future PANoptosis research. Improved understanding of PANoptosis and its mechanisms is critical for discovering new treatment targets and methods.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
STIM1 promotes cervical cancer progression through autophagy activation via TFEB nuclear translocation STIM1 通过 TFEB 核转位激活自噬,从而促进宫颈癌的进展。
IF 4.4 2区 生物学
Cellular signalling Pub Date : 2024-11-01 DOI: 10.1016/j.cellsig.2024.111500
{"title":"STIM1 promotes cervical cancer progression through autophagy activation via TFEB nuclear translocation","authors":"","doi":"10.1016/j.cellsig.2024.111500","DOIUrl":"10.1016/j.cellsig.2024.111500","url":null,"abstract":"<div><h3>Background</h3><div>Autophagy plays an important role in maintaining the stability of intracellular environment, abnormal autophagy is associated with the occurrence and progression of cancer, the role of STIM1 in regulating cancer autophagy remains controversial, and its clinical relevance is unclear. Our study aimed to investigate the effect and mechanism of STIM1 on cervical cancer, thus to provide new molecular therapeutic targets for cervical cancer in clinic.</div></div><div><h3>Methods</h3><div>We collected CIN III, FIGO IB and IIA fresh Specimens without chemotherapy from patients in Renmin Hospital of Hubei University of Medicine (<em>n</em> = 10). STIM1, TFEB and autophagy related proteins of different stage tissues were detected. In vitro, SKF96365 and AncoA4 were used to inhibit STIM1-administrated Ca<sup>2+</sup> entry of SiHa cells, Cyclosporine A (calcineurin inhibitors) were used to inhibit CaN/TFEB pathway, Ad-mCherry-GFPLC3B was used to detect autophagy flux, shSTIM1 was used to knockdown STIM1 expression.</div></div><div><h3>Results</h3><div>The expression levels of STIM1, TFEB and autophagy related proteins were positively correlated with the progression of cervical cancer. Inhibition of STIM1-mediated SOCE can decrease proliferation and migration, and promoted the apoptosis of cervical cancer cells. Knockdown STIM1 can inhibit autophagy and TFEB nuclear translocation.</div></div><div><h3>Conclusion</h3><div>STIM1 can promote autophagy and accelerate cervical cancer progression by increasing TFEB nuclear translocation of cervical cancer cells.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TIFA enhances glycolysis through E2F1 and promotes the progression of glioma TIFA 通过 E2F1 增强糖酵解,促进胶质瘤的进展。
IF 4.4 2区 生物学
Cellular signalling Pub Date : 2024-10-29 DOI: 10.1016/j.cellsig.2024.111498
{"title":"TIFA enhances glycolysis through E2F1 and promotes the progression of glioma","authors":"","doi":"10.1016/j.cellsig.2024.111498","DOIUrl":"10.1016/j.cellsig.2024.111498","url":null,"abstract":"<div><h3>Objective</h3><div>TRAF interacting protein with forkhead associated domain (TIFA) influence progression of many cancers. However, its role in glioma remains to be explored. This study investigated the function of TIFA in glioma.</div></div><div><h3>Methods</h3><div>The TIFA expression in glioma and patient outcomes were analyzed using online database. Gene set enrichment analysis (GSEA) revealed related mechanisms of TIFA in glioma. TIFA's effects on glioma glycolysis and growth were assessed using in vitro and in vivo experiments. Moreover, luciferase reporter and ChIP were employed to explore the interactions among E2F1, GLUT1, HK2, and LDHA. The subcutaneous xenograft assay further elaborated the effects of TIFA in glioma.</div></div><div><h3>Results</h3><div>We found overexpressed TIFA in glioma. Moreover, the high TIFA expression was associated with poor prognosis of glioma. Furthermore, GSEA indicated that overexpressed TIFA promoted E2F1 and glycolysis. Knockdown of TIFA decreased glioma development in cell and mice. TIFA knockdown down-regulated the expression of E2F1, GLUT1, HK2, and LDHA.</div></div><div><h3>Conclusions</h3><div>The study provides evidence that TIFA regulates E2F1 expression in glioma cells and promotes the proliferation, migration, and glycolysis. TIFA might be an advantageous therapeutic strategy against glioma.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
eIF3d specialized translation requires a RACK1-driven eIF3d binding to 43S PIC in proliferating SH-SY5Y neuroblastoma cells 在增殖的 SH-SY5Y 神经母细胞瘤细胞中,eIF3d 的特化翻译需要 RACK1 驱动的 eIF3d 与 43S PIC 结合。
IF 4.4 2区 生物学
Cellular signalling Pub Date : 2024-10-29 DOI: 10.1016/j.cellsig.2024.111494
{"title":"eIF3d specialized translation requires a RACK1-driven eIF3d binding to 43S PIC in proliferating SH-SY5Y neuroblastoma cells","authors":"","doi":"10.1016/j.cellsig.2024.111494","DOIUrl":"10.1016/j.cellsig.2024.111494","url":null,"abstract":"<div><div>Translation initiation of most mammalian mRNAs is mediated by a 5′ cap structure that binds eukaryotic initiation factor 4E (eIF4E). Notably, most mRNAs are still capped when eIF4E is inhibited, suggesting alternative mechanisms likely mediate cap-dependent mRNA translation without functional eIF4F. Here we found that, when eIF4E is inhibited, the ribosomal scaffold RACK1 recruits eIF3d on the 43S pre-initiation complex. Moreover, we found that it is just PKCBII in its active form that promotes the binding of RACK1 to eIF3d. These studies disclose a previously unknown role of ribosomal RACK1 for eIF3d specialized translation.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MFGE8 promotes gastric cancer progression by activating the IL-6/JAK/STAT3 signaling MFGE8通过激活IL-6/JAK/STAT3信号传导促进胃癌进展
IF 4.4 2区 生物学
Cellular signalling Pub Date : 2024-10-25 DOI: 10.1016/j.cellsig.2024.111486
{"title":"MFGE8 promotes gastric cancer progression by activating the IL-6/JAK/STAT3 signaling","authors":"","doi":"10.1016/j.cellsig.2024.111486","DOIUrl":"10.1016/j.cellsig.2024.111486","url":null,"abstract":"<div><h3>Objective</h3><div>Gastric cancer is malignant cancer with high morbidity and mortality worldwide. Milk fat globule EGF and factor V/VIII domain containing (MFGE8) was involved in many cancers. Nevertheless, the role of MFGE8 in gastric cancer remained indistinct. To probe the role of MFGE8 in gastric cancer and further explore the regulating mechanism.</div></div><div><h3>Methods</h3><div>GEPIA was employed for analysis of MFGE8 expression and survival of gastric cancer patients. MFGE8 expression in gastric cancer was determined by immunohistochemistry, PCR, and western blot. The effect of MFGE8 on gastric cancer cells were evaluated by a series of cell function experiments. The mechanism of MFGE8 on gastric cancer was analyzed by GSEA and verified by in vitro and in vivo experiments.</div></div><div><h3>Results</h3><div>MFGE8 was over-expressed in gastric cancer. Silence of MFGE8 suppressed cell viability, proliferated ability, migrated and invasive ability, and EMT, but accelerated cell apoptosis. The opposite results were obtained in MFGE8-overexpressed gastric cancer cells. Zinc finger and BTB domain containing 7 A (ZBTB7A) was a transcription factor of MFGE8. ZBTB7A overexpression eliminated the effect of MFGE8 on gastric cancer cells. MFGE8 activated the IL-6/JAK/STAT3 signaling. Inhibition of IL-6/JAK/STAT3 signaling by Stattic (pathway inhibitor) could eliminate the promoting effect of MFGE8 on IL-6/JAK/STAT3 signaling. In addition, MFGE8 shRNA inhibited tumor growth.</div></div><div><h3>Conclusion</h3><div>MFGE8 promoted cell proliferation, EMT progress, and tumor growth of gastric cancer by activating the IL-6/JAK/STAT3 signaling.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epithelial splicing regulatory protein 1 promotes peritoneal dissemination of ovarian cancer by inducing the formation of circular RNAs modulating epithelial plasticity 上皮剪接调节蛋白1通过诱导形成调节上皮可塑性的环形RNA,促进卵巢癌的腹膜扩散。
IF 4.4 2区 生物学
Cellular signalling Pub Date : 2024-10-24 DOI: 10.1016/j.cellsig.2024.111485
{"title":"Epithelial splicing regulatory protein 1 promotes peritoneal dissemination of ovarian cancer by inducing the formation of circular RNAs modulating epithelial plasticity","authors":"","doi":"10.1016/j.cellsig.2024.111485","DOIUrl":"10.1016/j.cellsig.2024.111485","url":null,"abstract":"<div><div>Peritoneal metastases prevalently occur in ovarian cancer, deteriorating patient prognosis. During the metastatic cascade, tumor plasticity enables cells to adapt to environmental changes, thereby facilitating dissemination. We previously found that epithelial splicing regulatory protein 1 (ESRP1) is linked to peritoneal metastasis and epithelial-mesenchymal plasticity in ovarian cancer. This study delves into the underlying mechanism. We found that ESRP1 preserves epithelial plasticity in ovarian cancer cells <em>in vitro</em> and <em>in vivo</em>. Functionally, ESRP1 enhances ovarian cancer cell growth and peritoneal dissemination. High-throughput sequencing revealed several ESRP1-related epithelial RNAs, encompassing both linear and circular forms. Specifically, ESRP1 triggers the cyclization of circPAFAH1B2 and circUBAP2 through binding to the GGU sequences in adjacent introns. The two ESRP1-induced circular RNAs stabilize <em>DKK3</em> and <em>AHR</em> mRNAs, which are critical for epithelial plasticity, through interaction with IGF2BP2. Collectively, ESRP1 triggers the formation of circPAFAH1B2 and circUBAP2, which in turn stabilizes <em>DKK3</em> and <em>AHR</em> through IGF2BP2 binding, thereby modulating the epithelial plasticity and aiding the peritoneal spread of ovarian cancer cells. The findings unveiled a biological network, orchestrated by ESRP1, that governs the epithelial-mesenchymal plasticity of ovarian cancer cells, emphasizing the therapeutic potential of ESRP1 and its induced circular RNAs for ovarian cancer treatment.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hsa_circ_0048764 facilitates the progression of non-small cell lung cancer by targeting miR-1178-3p/HMGA1 axis. Hsa_circ_0048764 通过靶向 miR-1178-3p/HMGA1 轴促进非小细胞肺癌的进展。
IF 4.4 2区 生物学
Cellular signalling Pub Date : 2024-10-24 DOI: 10.1016/j.cellsig.2024.111484
Xing Sun, Ping Feng, Haihua Chen, Zhijuan Ji, Lanmei Zhuang, Ting Zhu, Guangling Ji, Jin Wang
{"title":"Hsa_circ_0048764 facilitates the progression of non-small cell lung cancer by targeting miR-1178-3p/HMGA1 axis.","authors":"Xing Sun, Ping Feng, Haihua Chen, Zhijuan Ji, Lanmei Zhuang, Ting Zhu, Guangling Ji, Jin Wang","doi":"10.1016/j.cellsig.2024.111484","DOIUrl":"https://doi.org/10.1016/j.cellsig.2024.111484","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) remains a highly lethal disease, with a lack of fully established biomarkers and therapies. Circular RNAs (circRNAs) have emerged as powerful regulators of gene expression in multiple cancers. The role of circRNAs in NSCLC progression is still not well understood. In this study, GEO database analysis and qRT-PCR results revealed that hsa_circ_0048764 (circ_0048764) was overexpressed in NSCLC tissues and associated with poorer overall survival in patients with NSCLC. Functional assays demonstrated that silencing circ_0048764 inhibited NSCLC cell proliferation and metastasis. Bioinformatics analysis identified miR-1178-3p as having complementary binding sites with circ_0048764, a finding further validated by the dual-luciferase reporter assay. Additionally, predictions from the Starbase3.0 database, along with cellular experiments, revealed that miR-1178-3p regulates HMGA1 expression in NSCLC. Taken together, our findings suggest that circ_0048764 promotes NSCLC progression by enhancing HMGA1 expression through sponging miR-1178-3p, offering potential therapeutic targets for NSCLC treatment.</p>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The SIRT6/BAP1/xCT signaling axis mediates ferroptosis in cisplatin-induced AKI SIRT6/BAP1/xCT信号轴在顺铂诱导的AKI中介导铁变态反应。
IF 4.4 2区 生物学
Cellular signalling Pub Date : 2024-10-23 DOI: 10.1016/j.cellsig.2024.111479
{"title":"The SIRT6/BAP1/xCT signaling axis mediates ferroptosis in cisplatin-induced AKI","authors":"","doi":"10.1016/j.cellsig.2024.111479","DOIUrl":"10.1016/j.cellsig.2024.111479","url":null,"abstract":"<div><h3>Background</h3><div>Cisplatin is extensively utilized in clinical settings for treating solid tumors; However, its use is restricted because of the kidney damage caused by side effects. Moreover, currently, no effective medications have been approved to prevent or treat acute kidney injury induced by cisplatin. Our research indicates that sirtuin 6 (SIRT6) can inhibit ferroptosis induced by cisplatin, and the use of SIRT6 agonists can alleviate acute kidney injury caused by cisplatin.</div></div><div><h3>Methods</h3><div>An animal model of cisplatin-induced acute kidney injury (AKI) was established, followed by RNA sequencing to identify potential differentially expressed genes (DEGs) and associated pathways. To explore the role of SIRT6 in this model, SIRT6 knockout mice were generated, and recombinant adeno-associated virus was employed to achieve SIRT6 overexpression in the mice. In vitro, cells were cultured in a cisplatin-containing medium to establish a cisplatin-induced cell model. The function of SIRT6 was further investigated by overexpressing or knocking down the gene using lentiviral plasmids. To elucidate the underlying molecular mechanisms, we employed RNA sequencing, performed bioinformatics analyses, and conducted chromatin immunoprecipitation assays.</div></div><div><h3>Results</h3><div>RNA sequencing and Western blot analyses revealed a significant reduction in SIRT6 expression in mice with cisplatin-induced acute kidney injury (AKI). Enhancing SIRT6 expression improved renal function, reduced ferroptosis, and mitigated kidney damage, whereas SIRT6 knockout exacerbated kidney injury and heightened ferroptosis. Mechanistically, RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assays demonstrated that SIRT6 inhibits ferroptosis by reducing the acetylation of histone H4K9ac at the BAP1 promoter. Furthermore, in vitro studies demonstrated that the SIRT6 agonist UBCS039 can alleviate cisplatin-induced acute kidney injury, highlighting its potential therapeutic role in mitigating cisplatin's damaging effects. However, further research is needed to fully elucidate the underlying mechanisms and to validate these findings in vivo.</div></div><div><h3>Conclusion</h3><div>Our findings underscore the critical role of the SIRT6/BAP1/xCT axis in regulating ferroptosis, particularly via the downregulation of SIRT6, in the context of cisplatin-induced acute kidney injury (AKI). This suggests that SIRT6 could be a promising therapeutic target for treating cisplatin-induced AKI. However, additional research is required to explore the specific mechanisms and fully assess the therapeutic potential of SIRT6 in this context.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信