Chemical Engineering (Engineering) eJournal最新文献

筛选
英文 中文
Study of Dust Collection Effectiveness in Cyclonic-Vortex Action Apparatus 旋流-涡作用装置集尘效果研究
Chemical Engineering (Engineering) eJournal Pub Date : 2021-02-26 DOI: 10.15587/2706-5448.2021.225328
Andrei Torsky, A. Volnenko, L. Plyatsuk, L. Hurets, D. Zhumadullayev, Аbay Abzhabparov
{"title":"Study of Dust Collection Effectiveness in Cyclonic-Vortex Action Apparatus","authors":"Andrei Torsky, A. Volnenko, L. Plyatsuk, L. Hurets, D. Zhumadullayev, Аbay Abzhabparov","doi":"10.15587/2706-5448.2021.225328","DOIUrl":"https://doi.org/10.15587/2706-5448.2021.225328","url":null,"abstract":"The object of research is the efficiency of dust collection of fine dust in an apparatus with an intense turbulent mode of phase interaction. One of the most problematic areas of the existing dust and gas cleaning equipment is the low efficiency of collecting fine dust. Effective cleaning of exhaust gases from dust involves the use of multi-stage cleaning systems, including wet and dry dust cleaning devices, which entails high capital and operating costs. These disadvantages are eliminated in the developed design of the cyclone-vortex dust collector with two contact zones. The device implements both dry and wet dust collection mechanisms, which allows for high efficiency of dust removal at high productivity.\u0000The conducted studies of the total and fractional efficiency of dust collection when changing the operating parameters of the developed device showed that the efficiency of collecting fine dust is 98–99 %. The increase in the efficiency of dust collection in the dry stage of the device is due to an increase in centrifugal force. In the wet stage of contact, the efficiency reaches its maximum values due to the vortex crushing of the liquid in the nozzle zone of the apparatus. Studies of the fractional efficiency of the apparatus show that with an increase in the diameter of the captured particles, the efficiency of the dust collection process for dry and wet stages, as well as the overall efficiency, increases. With an increase in the density of irrigation, the overall efficiency of dust collection in the apparatus increases. It has been established that an increase in the efficiency of capturing highly dispersed particles occurs due to turbulent diffusion, the value of which is determined by the frequency of turbulent pulsations and the degree of entrainment of particles during the pulsating motion of packed bodies. To describe the results obtained, a centrifugal-inertial model for a dry contact stage and a turbulent-diffusion model of solid particle deposition for a wet contact stage are proposed, which make it possible to calculate the dust collection efficiency of the contact stages, as well as the overall efficiency of the cyclone-vortex apparatus.\u0000The results obtained show the prospects of using devices of this design at heat power plants and other industries.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74982738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Deformation Twinning in Octahedron-Based Face-Centered Cubic Metallic Structures: Localized Shear-Force Dipoles Drive Atomic Displacements 八面体基面心立方金属结构的变形孪晶:局域剪切力偶极驱动原子位移
Chemical Engineering (Engineering) eJournal Pub Date : 2021-02-18 DOI: 10.2139/ssrn.3788457
Hengfei Gu, Ph.D, Chengze Liu, Ph.D, Fusen Yuan, Ph.D, Fuzhou Han, Ph.D, Yingdong Zhang, Ph.D, Muhammad Ali, Wenbin Guo, Jie Ren, Lifeng Zhang, Songquan Wu, Geping Li, Ph.D.
{"title":"Deformation Twinning in Octahedron-Based Face-Centered Cubic Metallic Structures: Localized Shear-Force Dipoles Drive Atomic Displacements","authors":"Hengfei Gu, Ph.D, Chengze Liu, Ph.D, Fusen Yuan, Ph.D, Fuzhou Han, Ph.D, Yingdong Zhang, Ph.D, Muhammad Ali, Wenbin Guo, Jie Ren, Lifeng Zhang, Songquan Wu, Geping Li, Ph.D.","doi":"10.2139/ssrn.3788457","DOIUrl":"https://doi.org/10.2139/ssrn.3788457","url":null,"abstract":"Twinning is found to impart favorable mechanical, physical and chemical properties to nanostructured materials. One important twinning mode, deformation twinning, prevails in coarse-grained hexagonal close-packed (HCP) crystalline materials and body-centered cubic (BCC) and face-centered cubic (FCC) nanomaterials under high-stress conditions. In FCC structures, the {111} deformation twinning is traditionally believed to nucleate and grow through layer-by-layer emission of 1/6 Shockley partial dislocations on consecutive {111} planes. Here, we report that by conducting high-resolution transmission electron microscopy (HRTEM) observation, deformation twinning is, for the first time, found to occur in nanocrystalline (Fe, Nb)23Zr6 particles with a Mn23Th6-type FCC structure that is composed of a Zr-octahedron-based FCC network connected by alloying elements Fe and Nb like the large FCC structure such as metal-organic-framework (MOF). Based on direct atomic-scale observations, we discover a new mechanism for the {111} deformation twinning in FCC structures. To form a [112]/(111) twin, for example, short ( (‾1‾11) planes within two adjacent (111) plane layers in the repeated three-layer sequence of (111) planes are shear deformed continuously by a shear-force dipole along the [112] direction like a domino effect, whereas the other (111) plane in the repeated sequence remains intact. Through this route, a small energy for twinning is expected because only 2/3 (111) planes need to be transformed to form a twin. In addition, a loading criterion for deformation twinning of a FCC NP under uniaxial compression is proposed based on our results. Our work here not only provides a fundamental understanding on deformation twinning in FCC structures, but also opens up studies of deformation behaviors in a class of Mn23Th6-type FCC materials.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85318349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Influence of Material Properties on Spheroidisation of Gas Atomization Process 材料性能对气体雾化过程球化的影响
Chemical Engineering (Engineering) eJournal Pub Date : 2021-02-15 DOI: 10.2139/ssrn.3785861
Martin Dopler
{"title":"Influence of Material Properties on Spheroidisation of Gas Atomization Process","authors":"Martin Dopler","doi":"10.2139/ssrn.3785861","DOIUrl":"https://doi.org/10.2139/ssrn.3785861","url":null,"abstract":"For many contemporary powdermetallurgical applications, spherical powders are preferred. Spherical particles have a lower oxygen content, a better flowability and their behaviour is - compared to irregular particles - better predictable. The powder production process via melt atomization can be divided into the steps a. primary breakup into ligaments, b. ligament breakup and c. secondary breakup and/or spheroidisation, while simultaneously cooling and freezing take place. Apart from thermodynamic conditions during the process, melt properties such as viscosity, density, surface tension, heat capacity and thermal conductivity will influence the processes around spheroidisation. As a first step, a 4-force model (viscosity, surface tension, external dynamic and inertia forces) is applied on the melt droplet to predict the influence of the melt properties on spheroidisation separately. Secondly, the spheroidisation process is calculated for different materials such as Copper, Iron or Titanium for existing atomisation systems. Finally, suggestions are presented which may help to produce more spherical particles.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72675466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Low-Defect AM of High Strength Aluminium Alloy by LMD 低缺陷高强度铝合金的LMD增材制造
Chemical Engineering (Engineering) eJournal Pub Date : 2021-02-15 DOI: 10.2139/ssrn.3785871
Anika Langebeck, A. Bohlen, R. Rentsch, F. Vollertsen
{"title":"Low-Defect AM of High Strength Aluminium Alloy by LMD","authors":"Anika Langebeck, A. Bohlen, R. Rentsch, F. Vollertsen","doi":"10.2139/ssrn.3785871","DOIUrl":"https://doi.org/10.2139/ssrn.3785871","url":null,"abstract":"A manifold variety of additive manufacturing techniques has a significant positive impact on many industry sectors. Large components are often manufactured via laser metal deposition (LMD) instead of using powder bed based processes. The advantages of LMD process are a high build-up rate with values up to 300 cm³/h and a nearly limitless build-up volume. In combination with the lightweight material aluminium it is possible to manufacture large lightweight components with geometries adapted to customer requirements in small batches. This contributes the pursuit of higher efficiency of machines through lightweight materials as well as lightweight design. A low-defect additive manufacturing of high strength aluminium EN AW-7075 powder via LMD is an important challenge to concern. During the process a considerable proportion of pores can build which weakens the mechanical properties. Additionally, the heat input affects the hardness of the manufactured part. A significant reduction of pore volume can be achieved by a higher laser power and an improved shielding gas flow. Therefore, a shielding gas shroud was developed to keep atmospheric hydrogen away from the process zone. The combination of the improved shielding gas flow with a high laser power led to a decrease of pore volume from over 7% to lower than 1.5%.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83818336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Shear Modulus and Thermal Effect During Structural Relaxation in a Model Metallic Glass: Correlation and Thermal Decoupling 金属玻璃模型结构弛豫过程中的剪切模量和热效应:相关和热解耦
Chemical Engineering (Engineering) eJournal Pub Date : 2021-02-12 DOI: 10.2139/ssrn.3784439
Hongbo Zhou, V. Khonik, G. Wilde
{"title":"On the Shear Modulus and Thermal Effect During Structural Relaxation in a Model Metallic Glass: Correlation and Thermal Decoupling","authors":"Hongbo Zhou, V. Khonik, G. Wilde","doi":"10.2139/ssrn.3784439","DOIUrl":"https://doi.org/10.2139/ssrn.3784439","url":null,"abstract":"Pd40 Ni40P20 (at.%) samples with different enthalpy states and relaxation behaviors were fabricated through high-pressure torsion or sub-Tg annealing of the as-cast state. Subsequently, the underlying structural relaxation was studied by investigating the modulus and thermal characteristics using in-situ shear modulus measurement and modulated differential scanning calorimetry. The results show that high-pressure torsion leads to shear modulus softening and an increase of the irreversible exothermic enthalpy, indicating a significant structural rejuvenation, while sub-Tg annealing causes shear modulus hardening and a decrease of the irreversible exothermic enthalpy. Besides, the reversible endothermic effect which reflects the heat capacity was found to be almost identical for all samples, independent on deformation or thermal history. The total heat flow can be well correlated to the shear modulus within the framework of interstitialcy theory. Furthermore, we demonstrate that the structural relaxation below Tg decouples into the internal stress relaxation and β-relaxation. The former is an irreversible process of releasing internal stress, accompanied by an exothermic effect and modulus hardening. The latter is a complex process involving kinetic and thermodynamic components, accompanied by an endothermic effect and modulus softening. Shadow glass transition and glass transition overshoot are related to the activation (cage-breaking) processes in the kinetics of β-relaxation and α-relaxation, respectively. This work indicates that β-relaxation and α-relaxation are kinetically and thermodynamically identical but occur in distinct temperature or frequency domains. Internal stress relaxation as a universal mechanism plays a significant role in the structural relaxation, and simultaneously modulates the diffusive relaxation spectrum.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88814713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ni/Al-Hybrid Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and in situ Synchrotron Stress Analysis 基于三维相形貌成像、微束断裂力学和原位同步加速器应力分析的Ni/ al杂化泡沫界面研究
Chemical Engineering (Engineering) eJournal Pub Date : 2021-02-09 DOI: 10.2139/ssrn.3782840
Jutta Luksch, A. Jung, C. Pauly, R. Derr, Patrick Grünewald, M. Laub, M. Klaus, C. Genzel, C. Motz, F. Mücklich, F. Schaefer
{"title":"Ni/Al-Hybrid Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and in situ Synchrotron Stress Analysis","authors":"Jutta Luksch, A. Jung, C. Pauly, R. Derr, Patrick Grünewald, M. Laub, M. Klaus, C. Genzel, C. Motz, F. Mücklich, F. Schaefer","doi":"10.2139/ssrn.3782840","DOIUrl":"https://doi.org/10.2139/ssrn.3782840","url":null,"abstract":"Nickel(Ni)/aluminium(Al) hybrid foams are Al base foams coated with Ni by electrodeposition. Hybrid foams offer an enhanced energy absorption capacity. To ensure a good adhering Ni coating, necessary for a shear resistant interface, the influence of a chemical pre-treatment of the base foam was investigated by a combination of an interface morphology analysis by focused ion beam (FIB) tomography and in situ mechanical testing. The critical energy for interfacial decohesion from microbending fracture tests in the scanning electron microscope (SEM) were contrasted to depth-resolved measurements of the evolving stresses in the Ni coating during three-point bending tests at the energy-dispersive diffraction (EDDI) beamline at the synchrotron BESSY II. Such an assessment of the interface decohesion resistance with respect to the interface morphology provides a strategy for further improvement of the interface morphology.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79770382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Visible - Infrared Compatible Camouflage Photonic Crystal with Enhanced Emission in 5~8 μm 一种5~8 μm发射增强的可见光-红外兼容伪装光子晶体
Chemical Engineering (Engineering) eJournal Pub Date : 2021-02-05 DOI: 10.2139/ssrn.3783256
Saichao Dang, Hong Ye
{"title":"A Visible - Infrared Compatible Camouflage Photonic Crystal with Enhanced Emission in 5~8 μm","authors":"Saichao Dang, Hong Ye","doi":"10.2139/ssrn.3783256","DOIUrl":"https://doi.org/10.2139/ssrn.3783256","url":null,"abstract":"Because of surface structural constraint and thermal management requirement, visible - infrared compatible camouflage is still a great challenge. In this study, we introduce a 2D periodic aperture array into ZnO/Ag/ZnO film to realize visible-infrared compatible camouflage with a performance of thermal management by utilizing the extraordinary optical transmission in a dielectric/metal/dielectric (D/M/D) structure. Because of the high visible transmittance of the D/M/D structure, when applied on a visible camouflage coating, the beneath coating can be observed, realizing arbitrary visible camouflage. Due to the perforated Ag layer, both low emittances in 3~5 μm, 8~14 μm for infrared camouflage and high emittance in 5~8 μm for heat dissipation by radiation are achieved theoretically and experimentally. The fabricated photonic crystal exhibits high-temperature infrared camouflage in two atmospheric windows. With the same heating power of 0.40 W/cm2, this photonic crystal is 12.2 ℃ cooler than a sample with a low-emittance surface. The proposed visible - infrared compatible camouflage photonic crystal with the performance of thermal management provides a guideline on coordinated control of light and heat, indicating a potential application in energy & thermal technologies.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91159740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing the Performance of Anion Exchange Membrane Water Electrolyzer Operating in Neutral pH 提高中性酸碱度阴离子交换膜电解槽的性能
Chemical Engineering (Engineering) eJournal Pub Date : 2021-02-02 DOI: 10.2139/ssrn.3778363
Fatemeh Razmjooei, T. Morawietz, E. Taghizadeh, E. Hadjixenophontos, Lukas Mues, B. Wood, C. Harms, A. Gago, S. Ansar, K. Friedrich
{"title":"Increasing the Performance of Anion Exchange Membrane Water Electrolyzer Operating in Neutral pH","authors":"Fatemeh Razmjooei, T. Morawietz, E. Taghizadeh, E. Hadjixenophontos, Lukas Mues, B. Wood, C. Harms, A. Gago, S. Ansar, K. Friedrich","doi":"10.2139/ssrn.3778363","DOIUrl":"https://doi.org/10.2139/ssrn.3778363","url":null,"abstract":"Anion exchange membrane water electrolysis (AEMWE) for generation of hydrogen from water is an emerging technology with high potential to surpass peer electrolyzers. However, current AEMWEs exhibit significant overpotential loss. Almost all the reported improvements in AEMWE performance have been confined to development and optimization of the conductive membranes and active electrodes to address issues regarding the ohmic and activation loss in AEMWE. However, coming from a different perspective, the strong effect of other cell components, which directly influence interfacial contact and transport phenomenon, is an important aspect to further improve the AEMWE performance and should not be neglected . Here, for the first time we report a solution to solve this missing piece of the puzzle with a highly conductive novel multifunctional liquid/gas diffusion layers (LGDLs), which consisted of well-tuned pores to asynchronously transport electrons, heat and liquid/gas while minimizing ohmic, mass transport and interfacial losses. The ohmic and mass transfer losses were reduced by 48% and 58%, respectively, thanks to the developed multifunctional LGDL and as a result the performance increased by 13 % at 0.5 A cm-2 in water, which places AEMWE close in effectiveness to more mainstream alkaline electrolyzers but without the need of using corrosive alkaline solutions as electrolyte. This multifunctional LGDL, called NiMPL-PTL, was developed by introducing nickel based micro porous layers (MPLs) using atmospheric plasma spray (APS) technique on the top of a porous transport layer (PTL) substrate. The low tortuosity of this novel porous NiMPL-PTL can reduce capillary pressure and bubble point, which can efficiently remove the unavoidable gas bubbles formed at electrode surface. Moreover, this NiMPL-PTL can decrease the contact resistance, since it increases the contact area between PTL and membrane electrode assembly (MEA) by reducing the aperture size of the PTL. Therefore, a significant mitigation of mass transport issues at high current densities and an improvement in interfacial contact resistance (ICR) were achieved by implementing NiMPL-PTL in the AEMWE operated in water. Electrochemical results showed that for AEMWE cell with well-tuned NiMPL-PTLs, the operating voltage required at the current density of 0.5 A cm-2 is as low as 1.90 V with an operating efficiency of 76%HHV, which was 290 mV lower than that of cell with the uncoated PTLs , which could only reach to efficiency of 65%HHV. To the best of our knowledge, there has been no such a genuine design of multifunctional coated backing layer PTL to improve the AEMWE performance in water.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79764054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking Light-Induced Electron Transfer Towards O 2 in a Hybrid Photoredox-Laccase System 光还原酶-漆酶混合体系中光诱导电子向o2转移的跟踪
Chemical Engineering (Engineering) eJournal Pub Date : 2021-02-02 DOI: 10.2139/ssrn.3778327
Rajaa Farran, Y. Mekmouche, Nhat Tam Vo, C. Herrero, Annamaria Quaranta, Marie Sircoglou, F. Banse, P. Rousselot‐Pailley, A. Simaan, A. Aukauloo, T. Tron, W. Leibl
{"title":"Tracking Light-Induced Electron Transfer Towards O 2 in a Hybrid Photoredox-Laccase System","authors":"Rajaa Farran, Y. Mekmouche, Nhat Tam Vo, C. Herrero, Annamaria Quaranta, Marie Sircoglou, F. Banse, P. Rousselot‐Pailley, A. Simaan, A. Aukauloo, T. Tron, W. Leibl","doi":"10.2139/ssrn.3778327","DOIUrl":"https://doi.org/10.2139/ssrn.3778327","url":null,"abstract":"Photobiocatalysis is an interesting approach to use light to perform specific chemical transformations in a selective and efficient way. The intention is to couple a photoredox cycle with an enzyme performing multielectronic catalytic activity. Laccase, a robust multicopper oxidase, can be envisioned as a tool to use dioxygen as a clean electron sink when coupled to an oxidation photocatalyst. Here, we provide a detailed study of the coupling of a [Ru(bpy)3]2+ photosensitizer to laccase. We demonstrate that efficient laccase reduction requires using an electron relay like methyl viologen. In the presence of dioxygen, electrons transiently stored in superoxide ions (O2●–) are scavenged by laccase leading to formation of water instead of H2O2. The net result is the photo accumulation, in an essentially irreversible way, of highly oxidizing [Ru(bpy)3]3+. This study provides a global scheme for the future use of laccase, in tandem with a light-driven oxidative process, using O2 as both a one-electron transfer relay and a 4-electron substrate to become the sustainable final electron acceptor in a such a hybrid photocatalytic process.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80660703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Direct Conversion of CO 2 into Ethylene Over Fe-Decorated Hierarchical Molybdenum Carbide: Tailoring Activity and Stability 铁修饰层状碳化钼上CO 2直接转化为乙烯:裁剪活性和稳定性
Chemical Engineering (Engineering) eJournal Pub Date : 2021-01-13 DOI: 10.2139/ssrn.3765613
Himanshu Raghav, L. Konathala, N. Mishra, Bhanu Joshi, R. Goyal, Ankit Agrawal, Bipul Sarkar
{"title":"Direct Conversion of CO 2 into Ethylene Over Fe-Decorated Hierarchical Molybdenum Carbide: Tailoring Activity and Stability","authors":"Himanshu Raghav, L. Konathala, N. Mishra, Bhanu Joshi, R. Goyal, Ankit Agrawal, Bipul Sarkar","doi":"10.2139/ssrn.3765613","DOIUrl":"https://doi.org/10.2139/ssrn.3765613","url":null,"abstract":"In the past few years, the production olefin from various resources, particularly from carbon-rich sources, such as crude oil, natural gas, coal, and biomass, has received considerable attention. This study presented the production of light olefins by conducting CO2 hydrogenation through reverse water-gas shift and modified Fischer–Tropsch synthesis by employing a Fe-decorated large surface molybdenum carbide catalyst. A novel strategy was adopted for the synthesis of large surface mesoporous molybdenum carbide by using a hard template. A theoretical loading limit of Fe nanoparticles, calculated using density functional theory, was decorated over β-Mo2C through simple wetness impregnation. The trans isomers of Fe-doped β-Mo2C exhibited higher symmetry and were energetically slightly more stable for the hydrogenation of CO2 into light olefins than the cis isomers. Under the optimized condition, Fe(0.5)-Mo2C showed 7.3% CO2 conversion with 79.4% C2= olefins.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87393059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信