Xiu Chen, Pingping Zhang, Yu Zhang, Mengzhu Wei, Tian Tian, Dacheng Zhu, Yanling Guan, Wei Wei, Yang Ma
{"title":"The research progression of direct NLRP3 inhibitors to treat inflammatory disorders","authors":"Xiu Chen, Pingping Zhang, Yu Zhang, Mengzhu Wei, Tian Tian, Dacheng Zhu, Yanling Guan, Wei Wei, Yang Ma","doi":"10.1016/j.cellimm.2024.104810","DOIUrl":"10.1016/j.cellimm.2024.104810","url":null,"abstract":"<div><p>The NLRP3 inflammasome represents a cytoplasmic multiprotein complex with the capability to recognize a wide range of pathogen-derived, environmental, and endogenous stress-related factors. Dysregulated activation of the NLRP3 inflammasome has been implicated in the development of various inflammasome-associated disorders, highlighting its significance as a pivotal target for the treatment of inflammatory diseases. Nonetheless, despite its clinical importance, there is currently a lack of specific drugs available for directly targeting the NLRP3 inflammasome. Several strategies have been explored to target different facets of the NLRP3 inflammasome, with interventions aimed at directly inhibiting NLRP3 demonstrating the most promising efficacy and safety profiles. In this review, we provide a summary of direct inhibitors targeting NLRP3, elucidating their inhibitory mechanisms, clinical trial phases, and potential applications. Through this discussion, we aim to shed light on the implications of NLRP3 inhibition for the treatment of inflammatory diseases.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104810"},"PeriodicalIF":4.3,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139556090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christa M. Frodella , Liyuan Liu , Wei Tan , Stephen B. Pruett , Barbara L.F. Kaplan
{"title":"The mechanism by which cannabidiol (CBD) suppresses TNF-α secretion involves inappropriate localization of TNF-α converting enzyme (TACE)","authors":"Christa M. Frodella , Liyuan Liu , Wei Tan , Stephen B. Pruett , Barbara L.F. Kaplan","doi":"10.1016/j.cellimm.2024.104812","DOIUrl":"10.1016/j.cellimm.2024.104812","url":null,"abstract":"<div><p>Cannabidiol (CBD) is a phytocannabinoid derived from <em>Cannabis sativa</em> that exerts anti-inflammatory mechanisms. CBD is being examined for its putative effects on the neuroinflammatory disease, multiple sclerosis (MS). One of the major immune mediators that propagates MS and its mouse model experimental autoimmune encephalomyelitis (EAE) are macrophages. Macrophages can polarize into an inflammatory phenotype (M1) or an anti-inflammatory phenotype (M2a). Therefore, elucidating the impact on macrophage polarization with CBD pre-treatment is necessary to understand its anti-inflammatory mechanisms. To study this effect, murine macrophages (RAW 264.7) were pre-treated with CBD (10 µM) or vehicle (ethanol 0.1 %) and were either left untreated (naive; cell media only), or stimulated under M1 (IFN-γ + lipopolysaccharide, LPS) or M2a (IL-4) conditions for 24 hr. Cells were analyzed for macrophage polarization markers, and supernatants were analyzed for cytokines and chemokines. Immunofluorescence staining was performed on M1-polarized cells for the metalloprotease, tumor necrosis factor-α-converting enzyme (TACE), as this enzyme is responsible for the secretion of TNF-α. Overall results showed that CBD decreased several markers associated with the M1 phenotype while exhibiting less effects on the M2a phenotype. Significantly, under M1 conditions, CBD increased the percentage of intracellular and surface TNF-α but decreased secreted TNF-α. This phenomenon might be mediated by TACE as staining showed that CBD sequestered TACE intracellularly. CBD also prevented RelA nuclear translocation. These results suggest that CBD may exert its anti-inflammatory effects by reducing M1 polarization and decreasing TNF-α secretion via inappropriate localization of TACE and RelA.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104812"},"PeriodicalIF":4.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cristina D. Gaddie , Kevin G. Senior , Christopher Chan , Brad E. Hoffman , Geoffrey D. Keeler
{"title":"Upregulation of CD8+ regulatory T cells following liver-directed AAV gene therapy","authors":"Cristina D. Gaddie , Kevin G. Senior , Christopher Chan , Brad E. Hoffman , Geoffrey D. Keeler","doi":"10.1016/j.cellimm.2024.104806","DOIUrl":"10.1016/j.cellimm.2024.104806","url":null,"abstract":"<div><p>Liver-directed AAV gene therapy represents a unique treatment modality for a host of diseases. This is due, in part, to the induction of tolerance to transgene products. Despite the plethora of recognized regulatory cells in the body, there is currently a lack of literature supporting the induction of non-CD4<sup>+</sup> regulatory cells following hepatic AAV gene transfer. In this work, we show that CD8<sup>+</sup> regulatory T cells are up-regulated in PBMCs of mice following capsid only and therapeutic transgene AAV administration. Further, we demonstrate that hepatic AAV gene transfer results in a significant increase in CD8<sup>+</sup> regulatory T cells following experimental autoimmune encephalomyelitis induction. Notably, this response occurred only in therapeutic vector treated animals, not capsid only controls. Understanding the role these cells play in treatment efficacy will result in the development of improved AAV vectors that take advantage of the full gamut of regulatory cells within the body.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104806"},"PeriodicalIF":4.3,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008874924000091/pdfft?md5=5af61897d3bc203ac6d9ec559746b9d8&pid=1-s2.0-S0008874924000091-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139461194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Life-threatening infections in human newborns: Reconciling age-specific vulnerability and interindividual variability","authors":"Alessandro Borghesi","doi":"10.1016/j.cellimm.2024.104807","DOIUrl":"10.1016/j.cellimm.2024.104807","url":null,"abstract":"<div><p>In humans, the interindividual variability of clinical outcome following exposure to a microorganism is immense, ranging from silent infection to life-threatening disease. Age-specific immune responses partially account for the high incidence of infection during the first 28 days of life and the related high mortality at population level. However, the occurrence of life-threatening disease in individual newborns remains unexplained. By contrast, inborn errors of immunity and their immune phenocopies are increasingly being discovered in children and adults with life-threatening viral, bacterial, mycobacterial and fungal infections. There is a need for convergence between the fields of neonatal immunology, with its in-depth population-wide characterization of newborn-specific immune responses, and clinical immunology, with its investigations of infections in patients at the cellular and molecular levels, to facilitate identification of the mechanisms of susceptibility to infection in individual newborns and the design of novel preventive and therapeutic strategies.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104807"},"PeriodicalIF":4.3,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139461324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ariel Anwar , Carissa Lepore , Brian J. Czerniecki , Gary K. Koski , Loral E. Showalter
{"title":"PIM kinase inhibitor AZD1208 in conjunction with Th1 cytokines potentiate death of breast cancer cells in vitro while also maximizing suppression of tumor growth in vivo when combined with immunotherapy","authors":"Ariel Anwar , Carissa Lepore , Brian J. Czerniecki , Gary K. Koski , Loral E. Showalter","doi":"10.1016/j.cellimm.2024.104805","DOIUrl":"10.1016/j.cellimm.2024.104805","url":null,"abstract":"<div><p>PIM kinases are over-expressed by a number of solid malignancies including breast cancer, and are thought to regulate proliferation, survival, and resistance to treatment, making them attractive therapeutic targets. Because PIM kinases sit at the nexus of multiple oncodriver pathways, PIM antagonist drugs are being tested alone and in conjunction with other therapies to optimize outcomes. We therefore sought to test the combination of pharmacological PIM antagonism and Th1-associated immunotherapy. We show that the pan PIM antagonist, AZD1208, when combined in vitro with Th1 cytokines IFN-γ and TNF-α, potentiates metabolic suppression, overall cell death, and expression of apoptotic markers in human breast cancer cell lines of diverse phenotypes (HER-2<sup>pos</sup>/ER<sup>neg</sup>, HER-2<sup>pos</sup>/ER<sup>pos</sup> and triple-negative). Interestingly, AZD1208 was shown to moderately inhibit IFN-γ secretion by stimulated T lymphocytes of both human and murine origin, suggesting some inherent immunosuppressive activity of the drug. Nonetheless, when multiplexed therapies were tested in a murine model of HER-2<sup>pos</sup> breast cancer, combinations of HER-2 peptide-pulsed DCs and AZD1208, as well as recombinant IFN-γ plus AZD1208 significantly suppressed tumor outgrowth compared with single-treatment and control groups. These studies suggest that PIM antagonism may combine productively with certain immunotherapies to improve responsiveness.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104805"},"PeriodicalIF":4.3,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139409659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Response to “Letter to the Editor: SMAC mimetics inhibit human T cell proliferation and fail to augment type 1 cytokine responses”","authors":"Susan Murray","doi":"10.1016/j.cellimm.2023.104785","DOIUrl":"10.1016/j.cellimm.2023.104785","url":null,"abstract":"","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"395 ","pages":"Article 104785"},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135566932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Letter to the Editor: SMAC mimetics inhibit human T cell proliferation and fail to augment type 1 cytokine responses","authors":"Jean Bourhis , Xu-Shan Sun , Yungan Tao","doi":"10.1016/j.cellimm.2023.104772","DOIUrl":"10.1016/j.cellimm.2023.104772","url":null,"abstract":"","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"395 ","pages":"Article 104772"},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138298503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Zhang , Xuan Jiang , Qing Wang , Jiayi Wu , Juan Zhou
{"title":"Dexamethasone alleviates pulmonary sarcoidosis by regulating the TGF-β/Smad3 signaling to promote Th17/Treg cell rebalance","authors":"Yu Zhang , Xuan Jiang , Qing Wang , Jiayi Wu , Juan Zhou","doi":"10.1016/j.cellimm.2023.104781","DOIUrl":"10.1016/j.cellimm.2023.104781","url":null,"abstract":"<div><p>Pulmonary sarcoidosis is an immune-mediated disorder closely related to Th17/Treg cell imbalance. Dexamethasone has been shown to regulate inflammation and immune responses in sarcoidosis patients. However, the underlying mechanisms of dexamethasone regulating Th17/Treg balance in sarcoidosis remain elusive. Herein, we elucidated the function role of TGF-β/Smad3 signaling in pulmonary sarcoidosis development and explored the underlying mechanism of dexamethasone in treating pulmonary sarcoidosis. We found that the TGF-β/Smad3 pathway was inactivated in pulmonary sarcoidosis patients. <em>Propionibacterium acnes</em> (PA) induced mouse model was generated to investigate the function of TGF-β/Smad3 signaling <em>in vivo</em>. Data indicated that IL17A inhibition with neutralizing antibody and activation of TGF-β/Smad3 signaling with SRI-011381 alleviated granuloma formation in the sarcoidosis mouse model. Moreover, we revealed that the Th17/Treg cell ratio was increased with PA treatment in mouse bronchoalveolar lavage fluid (BALF) and peripheral blood. The concentration of cytokines produced by Th17 cells (IL-17A, IL-23) was up-regulated in the BALF of PA-treated mice, while those produced by Tregs (IL-10, TGF-β1) presented significant reduction. The treatment of IL-17A neutralizing antibody or SRI-011381 was demonstrated to rescue the PA-induced changes in the concentration of IL-17A, IL-23, IL-10, and TGF-β1. Additionally, we demonstrated that dexamethasone treatment activated the TGF-β/Smad3 signaling in the lung tissues of pulmonary sarcoidosis mice. Dexamethasone was also revealed to promote the rebalancing of the Th17/Treg ratio and attenuated the granuloma formation in pulmonary sarcoidosis. In conclusion, dexamethasone activates the TGF-β/Smad3 signaling and induces Th17/Treg rebalance, alleviating pulmonary sarcoidosis, which suggests the potential of dexamethasone in treating pulmonary sarcoidosis.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"395 ","pages":"Article 104781"},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haoting Hsu , Claudio Zanettini , Modupe Coker , Sarah Boudova , David Rach , Godfrey Mvula , Titus H. Divala , Randy G. Mungwira , Francesca Boldrin , Giulia Degiacomi , Laura Cioetto Mazzabò , Riccardo Manganelli , Miriam K. Laufer , Yuji Zhang , Luigi Marchionni , Cristiana Cairo
{"title":"Concomitant assessment of PD-1 and CD56 expression identifies subsets of resting cord blood Vδ2 T cells with disparate cytotoxic potential","authors":"Haoting Hsu , Claudio Zanettini , Modupe Coker , Sarah Boudova , David Rach , Godfrey Mvula , Titus H. Divala , Randy G. Mungwira , Francesca Boldrin , Giulia Degiacomi , Laura Cioetto Mazzabò , Riccardo Manganelli , Miriam K. Laufer , Yuji Zhang , Luigi Marchionni , Cristiana Cairo","doi":"10.1016/j.cellimm.2023.104797","DOIUrl":"10.1016/j.cellimm.2023.104797","url":null,"abstract":"<div><p>Vγ9Vδ2 T lymphocytes are programmed for broad antimicrobial responses with rapid production of Th1 cytokines even before birth, and thus thought to play key roles against pathogens in infants. The process regulating Vδ2 cell acquisition of cytotoxic potential shortly after birth remains understudied. We observed that perforin production in cord blood Vδ2 cells correlates with phenotypes defined by the concomitant assessment of PD-1 and CD56. Bulk RNA sequencing of sorted Vδ2 cell fractions indicated that transcripts related to cytotoxic activity and NK function are enriched in the subset with the highest proportion of perforin<sup>+</sup> cells. Among differentially expressed transcripts, IRF8, previously linked to CD8 T cell effector differentiation and NK maturation, has the potential to mediate Vδ2 cell differentiation towards cytotoxic effectors. Our current and past results support the hypothesis that distinct mechanisms regulate Vδ2 cell cytotoxic function before and after birth, possibly linked to different levels of microbial exposure.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"395 ","pages":"Article 104797"},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139035756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fernanda Agostini Rocha , Caio Raony Farina Silveira , Ancély Ferreira dos Santos , Ana Carolina Buzzo Stefanini , Nelson Hamerschlak , Luciana Cavalheiro Marti
{"title":"Development of a highly cytotoxic, clinical-grade virus-specific T cell product for adoptive T cell therapy","authors":"Fernanda Agostini Rocha , Caio Raony Farina Silveira , Ancély Ferreira dos Santos , Ana Carolina Buzzo Stefanini , Nelson Hamerschlak , Luciana Cavalheiro Marti","doi":"10.1016/j.cellimm.2023.104795","DOIUrl":"10.1016/j.cellimm.2023.104795","url":null,"abstract":"<div><p>At present, recipients of allogeneic hematopoietic stem-cells are still suffering from recurrent infections after transplantation. Infusion of virus-specific T cells (VST) post-transplant reportedly fights several viruses without increasing the risk of <em>de novo</em> graft-<em>versus</em>-host disease. This study targeted cytomegalovirus (CMV) for the development of an innovative approach for generating a very specific VST product following Good Manufacturing Practices (GMP) guidelines.</p><p>We used a sterile disposable compartment named the Leukoreduction System Chamber (LRS-chamber) from the apheresis platelet donation kit as the starting material, which has demonstrated high levels of T cells. Using a combination of IL-2 and IL-7 we could improve expansion of CMV-specific T cells. Moreover, by developing and establishing a new product protocol, we were able to stimulate VST proliferation and favors T cell effector memory profile. The expanded VST were enriched in a closed automated system, creating a highly pure anti-CMV product, which was pre-clinically tested for specificity <em>in vitro</em> and for persistence, biodistribution, and toxicity <em>in vivo</em> using NOD scid mice. Our results demonstrated very specific VST, able to secrete high amounts of interferon only in the presence of cells infected by the human CMV strain (AD169), and innocuous to cells partially HLA compatible without viral infection.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"395 ","pages":"Article 104795"},"PeriodicalIF":4.3,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138567560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}