Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research最新文献

筛选
英文 中文
Role and regulation of p53 during an ultraviolet radiation-induced G1 cell cycle arrest. 在紫外线辐射诱导的G1细胞周期阻滞中p53的作用和调控。
R K Geyer, H Nagasawa, J B Little, C G Maki
{"title":"Role and regulation of p53 during an ultraviolet radiation-induced G1 cell cycle arrest.","authors":"R K Geyer,&nbsp;H Nagasawa,&nbsp;J B Little,&nbsp;C G Maki","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>p53 can play a key role in response to DNA damage by activating a G1 cell cycle arrest. However, the importance of p53 in the cell cycle response to UV radiation is unclear. In this study, we used normal and repair-deficient cells to examine the role and regulation of p53 in response to UV radiation. A dose-dependent G1 arrest was observed in normal and repair-deficient cells exposed to UV. Expression of HPV16-E6, or a dominant-negative p53 mutant that inactivates wildtype p53, caused cells to become resistant to this UV-induced G1 arrest. However, a G1 to S-phase delay was still observed after UV treatment of cells in which p53 was inactivated. These results indicate that UV can inhibit G1 to S-phase progression through p53-dependent and independent mechanisms. Cells deficient in the repair of UV-induced DNA damage were more susceptible to a G1 arrest after UV treatment than cells with normal repair capacity. Moreover, no G1 arrest was observed in cells that had completed DNA repair prior to monitoring their movement from G1 into S-phase. Finally, p53 was stabilized under conditions of a UV-induced G1 arrest and unstable when cells had completed DNA repair and progressed from G1 into S-phase. These results suggest that unrepaired DNA damage is the signal for the stabilization of p53, and a subsequent G1 phase cell cycle arrest in UV-irradiated cells.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 3","pages":"149-56"},"PeriodicalIF":0.0,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21618855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epidermal overexpression of granulocyte-macrophage colony-stimulating factor induces both keratinocyte proliferation and apoptosis. 表皮粒细胞-巨噬细胞集落刺激因子的过度表达可诱导角质细胞增殖和凋亡。
K Breuhahn, A Mann, G Müller, A Wilhelmi, P Schirmacher, A Enk, M Blessing
{"title":"Epidermal overexpression of granulocyte-macrophage colony-stimulating factor induces both keratinocyte proliferation and apoptosis.","authors":"K Breuhahn,&nbsp;A Mann,&nbsp;G Müller,&nbsp;A Wilhelmi,&nbsp;P Schirmacher,&nbsp;A Enk,&nbsp;M Blessing","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Granulocyte-macrophage colony-stimulating factor (GM-CSF) is released by keratinocytes in sizeable amounts only under pathological conditions, e.g., after topical application of a tumor promoter, in atopic dermatitis (AD), and after wounding. To study the biological function of this cytokine release, we generated transgenic mice that constitutively overexpress GM-CSF in the epidermis. An increase in the numbers of mast cells and Langerhans cells (LCs) in transgenics versus nontransgenic controls was observed but no severe inflammation. This is consistent with a central role of this cytokine in the development and maturation of LCs. Mitotic activity in the epidemnis of transgenic mice was elevated, but epidermal thickness and differentiation were normal. Homeostasis is maintained by an increase of apoptosis in the epidermis. We describe the differential expression of regulators of apoptosis and discuss a potential mechanism for this novel proapoptotic activity of GM-CSF on keratinocytes. Both stimulation of proliferation and promotion of apoptosis are of great relevance to tumorigenesis. The latter may be a means of removing damaged cells after genotoxic stress or injury.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 2","pages":"111-21"},"PeriodicalIF":0.0,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21566639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A role for E2F1 in the induction of apoptosis during thymic negative selection. 胸腺阴性选择过程中E2F1在诱导细胞凋亡中的作用。
I García, M Murga, A Vicario, S J Field, A M Zubiaga
{"title":"A role for E2F1 in the induction of apoptosis during thymic negative selection.","authors":"I García,&nbsp;M Murga,&nbsp;A Vicario,&nbsp;S J Field,&nbsp;A M Zubiaga","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Thymic negative selection is the process in which maturing thymocytes that express T-cell receptors recognizing self are eliminated by apoptotic cell death. The molecular mechanism by which this occurs is poorly understood. Notably, genes involved in cell death, even thymocyte death, such as Fas, Fas-ligand, p53, caspase-1, caspase-3, and caspase-9, and Bcl-2 have been found to not be required for normal thymic negative selection. We have demonstrated previously that E2F1-deficient mice have a defect in thymocyte apoptosis. Here we show that E2F1 is required for normal thymic negative selection. Furthermore, we observed an E2F1-dependent increase of p53 protein levels during the process of thymic clonal deletion, which suggests that E2F1 regulates activation-induced apoptosis of self-reactive thymocytes by a p53-dependent mechanism. In contrast, other apoptotic pathways operating on developing thymocytes, such as glucocorticoid-induced cell death, are not mediated by E2F1. The T lymphocytes that escape thymic negative selection migrate to the peripheral immune system but do not appear to be autoreactive, indicating that there may exist E2F1-independent mechanisms of peripheral tolerance, which protect mice from developing an autoimmune response. We expect that E2F1-deficient mice will provide a useful tool for understanding the molecular mechanism of and the immunological importance of thymic negative selection.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 2","pages":"91-8"},"PeriodicalIF":0.0,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21567318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cooperative effect of hepatocyte growth factor and fibronectin in anchorage-independent survival of mammary carcinoma cells: requirement for phosphatidylinositol 3-kinase activity. 肝细胞生长因子和纤连蛋白在乳腺癌细胞锚定非依赖性存活中的协同作用:对磷脂酰肌醇3-激酶活性的要求。
H Qiao, R Saulnier, A Patryzkat, N Rahimi, L Raptis, J Rossiter, E Tremblay, B Elliott
{"title":"Cooperative effect of hepatocyte growth factor and fibronectin in anchorage-independent survival of mammary carcinoma cells: requirement for phosphatidylinositol 3-kinase activity.","authors":"H Qiao,&nbsp;R Saulnier,&nbsp;A Patryzkat,&nbsp;N Rahimi,&nbsp;L Raptis,&nbsp;J Rossiter,&nbsp;E Tremblay,&nbsp;B Elliott","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Anchorage-independent survival and growth are critical characteristics of malignant cells. We showed previously that the addition of exogenous hepatocyte growth factor (HGF) and the presence of fibronectin fibrils stimulate anchorage-independent colony growth of a murine mammary carcinoma, SP1, which expresses both HGF and HGF receptor (Met; R. Saulnier et al., Exp. Cell Res., 222: 360-369, 1996). We now show that tyrosine phosphorylation of Met in carcinoma cells is augmented by cell adhesion and spreading on fibronectin substratum. In contrast, detached serum-starved cells exhibit reduced tyrosine phosphorylation of Met and undergo apoptotic cell death within 18-24 h. Under these conditions, the addition of HGF stimulates tyrosine phosphorylation of Met and restores survival of carcinoma cells. Soluble fibronectin also stimulates cell survival and shows a cooperative survival response with HGF but does not affect tyrosine phosphorylation of Met; these results indicate that fibronectin acts via a pathway independent of Met in detached cells. We demonstrated previously that inhibition of phosphatidylinositol (PI) 3-kinase activity blocks HGF-induced DNA synthesis of carcinoma cells (N. Rahimi et al., J. Biol. Chem., 271: 24850-24855, 1996). We now show in detached cells a cooperative effect of HGF and FN in the activation of PI 3-kinase and on the phosphorylation of PKB/Akt at serine 473. PI 3-kinase activity is also required for the HGF- and fibronectin-induced survival responses, as well as anchorage-independent colony growth. However, c-Src kinase or MEK1/2 activities are not required for the cell survival effect. Together, these results demonstrate that the PI 3-kinase/Akt pathway is a key effector of the HGF- and fibronectin-induced survival response of breast carcinoma cells under detached conditions and corroborate an interaction between integrin and HGF/ Met signalling pathways in the development of invasive breast cancer.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 2","pages":"123-33"},"PeriodicalIF":0.0,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21566640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adherence of human erythroleukemia cells inhibits proliferation without inducing differentiation. 人红细胞粘附抑制增殖而不诱导分化。
A Molla, M R Block
{"title":"Adherence of human erythroleukemia cells inhibits proliferation without inducing differentiation.","authors":"A Molla,&nbsp;M R Block","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>To investigate the effect of extracellular matrix molecules in the megakaryocytic lineage, we studied the role of integrin engagement in the proliferation and differentiation of human erythroleukemia (HEL) cells. HEL cells grew in suspension, but their adherence depended upon the presence of matrix proteins or protein kinase C signaling. Adherence by itself did not trigger commitment of these cells but accelerated phorbol 12-myristate 13-acetate-induced differentiation. HEL cells adhered to fibronectin mainly through alpha5beta1, and this receptor acted synergetically with alpha4beta1. Integrin engagement induced cell growth arrest through mitogen-activated protein kinase inactivation. Such down-regulation of the mitogen-activated protein kinase pathway by integrin engagement was suggested as a megakaryocytic-platelet lineage specificity. This signaling was not restricted to a peculiar integrin but was proposed as a general mechanism in these cells.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 2","pages":"83-90"},"PeriodicalIF":0.0,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21567317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional regulation of the cellular retinoic acid binding protein I gene in F9 teratocarcinoma cells. F9畸胎瘤细胞维甲酸结合蛋白I基因的转录调控。
A L Means, J R Thompson, L J Gudas
{"title":"Transcriptional regulation of the cellular retinoic acid binding protein I gene in F9 teratocarcinoma cells.","authors":"A L Means,&nbsp;J R Thompson,&nbsp;L J Gudas","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Retinoic acid (RA) induces the differentiation of many murine teratocarcinoma cell lines such as F9 and P19. In F9 cells, the level of the cellular retinoic acid binding protein I (CRABP I) mRNA is greatly reduced after exposure of the cultured cells to exogenous RA. In P19 cells, the level of CRABP I mRNA is greatly increased after RA exposure. We have identified a 176-bp region in the murine CRABP I promoter, between -2.9 and -2.7 kb 5' of the start site of transcription, which acts as an enhancer in undifferentiated F9 stem cells and through which RA effects inhibition of CRABP I transcription. Within this region are two footprinted sites at -2763 and -2834. This 176-bp regulatory region does not function to enhance CRABP I transcription in P19 stem cells. Several DNA sequences within these two footprinted regions bind proteins from F9 nuclear extracts but not from P19 nuclear extracts (e.g., FP1B, FP1A, and FP2B), as assessed by gel shift assays. This 176-bp CRABP I genomic region has not been sequenced previously and functionally analyzed in cultured cells because it was not present in the murine CRABP I clones used for the promoter analyses reported earlier by another laboratory. The function of this enhancer may be to reduce the expression of the CRABP I gene in specific embryonic cell types in order to regulate the amount of RA to which the cells are exposed.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 2","pages":"71-82"},"PeriodicalIF":0.0,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21567316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase activity in MCF-7 cells prevents estrogen-induced mitogenesis. 抑制MCF-7细胞中的丝裂原活化蛋白激酶和磷脂酰肌醇3-激酶活性可阻止雌激素诱导的丝裂发生。
E K Lobenhofer, G Huper, J D Iglehart, J R Marks
{"title":"Inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase activity in MCF-7 cells prevents estrogen-induced mitogenesis.","authors":"E K Lobenhofer,&nbsp;G Huper,&nbsp;J D Iglehart,&nbsp;J R Marks","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Estrogen acts to promote DNA synthesis in the MCF-7 human breast cancer cell line via its interaction with high levels of estrogen receptor. The primary mode of estrogen action has been considered to be through transcriptional activation of genes containing estrogen response elements, including the immediate early genes c-myc and fos. Recent reports have indicated that estrogen, acting through the estrogen receptor, is capable of inducing the mitogen-activated protein kinase (MAPK) cytoplasmic signaling cascade. In this study, specific small molecule inhibitors of MAPK and phosphatidylinositol 3-kinase activity were used to determine the influence of these cascades on estrogen-mediated mitogenesis. Phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, as well as inhibitors of MAPK kinase-1, PD098059 and U0126, decreased the fraction of cells entering DNA synthesis after treatment with 17beta-estradiol. These compounds did not inhibit expression of myc or fos. However, the drugs did prevent the accumulation of cyclin D1 and hyperphosphorylated retinoblastoma protein, indicating that the block occurred at, or prior to, this point in the cell cycle. Although these compounds were effective in preventing estrogen-mediated mitogenesis, the downstream kinases extracellular signal-regulated kinase 1, extracellular signal-regulated kinase 2, and protein kinase B were not activated over basal levels by estrogen treatment. These studies suggest that estrogen initiates mitogenesis by inducing the transcription of immediate early genes, but cytoplasmic signaling pathways play an important role in the control of subsequent events in the cell cycle.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 2","pages":"99-110"},"PeriodicalIF":0.0,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21566638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular cloning of a novel retinoic acid-responsive gene, HA1R-62, which is also up-regulated in Hoxa-1-overexpressing cells. 一个新的维甲酸反应基因HA1R-62的分子克隆,该基因在hoxa -1过表达细胞中也上调。
J Shen, L J Gudas
{"title":"Molecular cloning of a novel retinoic acid-responsive gene, HA1R-62, which is also up-regulated in Hoxa-1-overexpressing cells.","authors":"J Shen,&nbsp;L J Gudas","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Using a PCR-based cDNA subtractive hybridization method (L. Diatchenko et al., Proc. Natl. Acad. Sci. USA, 93: 6025-6030, 1996), we cloned a cDNA fragment of a novel gene that is highly expressed in F9-10; F9-10 is an F9 teratocarcinoma stem cell line that expresses high levels of exogenous Hoxa-1 mRNA and protein in comparison to F9 wild-type stem cells, which do not express endogenous Hoxa-1 mRNA in the absence of retinoic acid (RA). Rapid amplification of cDNA ends was used to clone the full-length cDNA of this gene, designated HA1R-62 (Hoxa1 regulated-62). We have shown that HA1R-62 is also a RA-responsive gene and that it is expressed (mRNA size, approximately 4.3 kb) in adult mouse thymus, lung, kidney, and ovary as well as in 12.5-day mouse embryos. DNA sequence analysis and in vitro translation experiments have shown that HA1R-62 encodes a protein with a molecular mass of approximately 26 kDa. Elucidation of the function of the HA1R-62 gene product will provide new insights into the functions of RA and homeobox genes.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 1","pages":"11-7"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21526512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphospecific antibodies reveal focal adhesion kinase activation loop phosphorylation in nascent and mature focal adhesions and requirement for the autophosphorylation site. 磷酸化特异性抗体揭示了新生和成熟局灶黏附中局灶黏附激酶激活环的磷酸化和对自磷酸化位点的需求。
P J Ruest, S Roy, E Shi, R L Mernaugh, S K Hanks
{"title":"Phosphospecific antibodies reveal focal adhesion kinase activation loop phosphorylation in nascent and mature focal adhesions and requirement for the autophosphorylation site.","authors":"P J Ruest,&nbsp;S Roy,&nbsp;E Shi,&nbsp;R L Mernaugh,&nbsp;S K Hanks","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Focal adhesion kinase (FAK) is a key signaling molecule regulating cellular responses to integrin-mediated adhesion. Integrin engagement promotes FAK phosphorylation at multiple sites to achieve full FAK activation. Phosphorylation of FAK Tyr-397 creates a binding site for Src-family kinases, and phosphorylation of FAK Tyr-576/Tyr-577 in the kinase domain activation loop enhances catalytic activity. Using novel phosphospecific antibody reagents, we show that FAK activation loop phosphorylation is significantly elevated in cells expressing activated Src and is an early event following cell adhesion to fibronectin. In both cases, this regulation is largely dependent on Tyr-397. We also show that the FAK activation loop tyrosines are required for maximal Tyr-397 phosphorylation. Finally, immunostaining analyses revealed that tyrosine-phosphorylated forms of FAK are present in both newly forming and mature focal adhesions. Our findings support a model for reciprocal activation of FAK and Src-family kinases and suggest that FAK/Src signaling may occur during both focal adhesion assembly and turnover.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 1","pages":"41-8"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21526515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thrombin causes pseudopod detachment via a pathway involving cytosolic phospholipase A2 and 12/15-lipoxygenase products. 凝血酶通过涉及胞质磷脂酶A2和12/15脂氧合酶产物的途径引起假足脱离。
S Ross, B Essary, B A de la Houssaye, Z Pan, K Mikule, O Mubarak, K H Pfenninger
{"title":"Thrombin causes pseudopod detachment via a pathway involving cytosolic phospholipase A2 and 12/15-lipoxygenase products.","authors":"S Ross,&nbsp;B Essary,&nbsp;B A de la Houssaye,&nbsp;Z Pan,&nbsp;K Mikule,&nbsp;O Mubarak,&nbsp;K H Pfenninger","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Thrombin causes rapid pseudopod detachment and shortening in Dunning rat prostatic carcinoma (MAT-Lu) cells. As seen by interference reflection microscopy and by immunofluorescence analysis with antibodies to paxillin and talin, the primary event is disassembly of adhesion sites. Biochemically, thrombin is a potent activator of cytosolic phospholipase A2 and increases eicosanoid production in these cells. The pseudopod effects are blocked by lipoxygenase (but not cyclooxygenase) inhibitors. Arachidonic acid and 12(S)-hydroxyeicosatetraenoic acid or 15(S)-hydroxyeicosatetraenoic acid mimic the thrombin effect. We conclude that in certain cancer cells, thrombin is a pseudopod repellent that exerts its effect via a cascade involving cytosolic phospholipase A2, 12/15-lipoxygenase, and 12(S)- and/or 15(S)-hydroxyeicosatetraenoic acid.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 1","pages":"19-30"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21526513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信