Chemical Engineering Communications最新文献

筛选
英文 中文
Growing hydrogen production by merging the glycerol steam reforming and water gas shift reactions into a single reactor 通过将甘油蒸汽重整反应和水煤气转移反应合并到一个反应器中来增加氢气产量
IF 2.5 4区 工程技术
Chemical Engineering Communications Pub Date : 2023-11-27 DOI: 10.1080/00986445.2023.2287501
Anmesh Gaire, Susan Stagg-Williams, Christopher Depcik
{"title":"Growing hydrogen production by merging the glycerol steam reforming and water gas shift reactions into a single reactor","authors":"Anmesh Gaire, Susan Stagg-Williams, Christopher Depcik","doi":"10.1080/00986445.2023.2287501","DOIUrl":"https://doi.org/10.1080/00986445.2023.2287501","url":null,"abstract":"One promising idea to use excess glycerol generated during biodiesel fabrication is to produce hydrogen (H2) via the steam reforming of glycerol (GSR). This study combined GSR and water-gas shift (...","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green corrosion inhibitor for mild steel extracted from soybean leaves 从大豆叶片中提取的绿色低碳钢缓蚀剂
IF 2.5 4区 工程技术
Chemical Engineering Communications Pub Date : 2023-11-24 DOI: 10.1080/00986445.2023.2284732
Alfonso Pepe, Florencia R. Tito, Alejo D. Mandri, Ricardo C. Dommarco, Andrés Pepe
{"title":"Green corrosion inhibitor for mild steel extracted from soybean leaves","authors":"Alfonso Pepe, Florencia R. Tito, Alejo D. Mandri, Ricardo C. Dommarco, Andrés Pepe","doi":"10.1080/00986445.2023.2284732","DOIUrl":"https://doi.org/10.1080/00986445.2023.2284732","url":null,"abstract":"The use of green-soluble inhibitors in the corrosive medium as alternatives to traditional inhibitors has increased due to the toxicity of the commonly used substances. These novel substances are s...","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current advances and future scope of copper sulphide (CuS) and its conjugates for supercapacitor developments 硫化铜及其偶联物在超级电容器领域的研究进展及前景
IF 2.5 4区 工程技术
Chemical Engineering Communications Pub Date : 2023-11-24 DOI: 10.1080/00986445.2023.2284724
Akashdeep Dey, S. Noyel Victoria, Mahendra S. Gaikwad
{"title":"Current advances and future scope of copper sulphide (CuS) and its conjugates for supercapacitor developments","authors":"Akashdeep Dey, S. Noyel Victoria, Mahendra S. Gaikwad","doi":"10.1080/00986445.2023.2284724","DOIUrl":"https://doi.org/10.1080/00986445.2023.2284724","url":null,"abstract":"Supercapacitors (SCs) are devices that can store and release massive amounts of electrical energy, making them ideal for use in a variety of applications. Continuous technological advancements in t...","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on the solution to one-dimensional advection-dispersion-reaction problems 一维平流-分散-反应问题解的注记
IF 2.5 4区 工程技术
Chemical Engineering Communications Pub Date : 2023-11-23 DOI: 10.1080/00986445.2023.2284720
Marko V. Lubarda, Vlado A. Lubarda
{"title":"A note on the solution to one-dimensional advection-dispersion-reaction problems","authors":"Marko V. Lubarda, Vlado A. Lubarda","doi":"10.1080/00986445.2023.2284720","DOIUrl":"https://doi.org/10.1080/00986445.2023.2284720","url":null,"abstract":"The series representation of the reactant concentration in one-dimensional advection-dispersion-reaction problems within a container of finite length is derived in a compact and computationally les...","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of hybrid layered double hydroxides (HLDH) and application as adsorbent for removal of direct sky-blue dye 杂化层状双氢氧化物(HLDH)的合成及其在直接去除天蓝染料中的应用
4区 工程技术
Chemical Engineering Communications Pub Date : 2023-11-07 DOI: 10.1080/00986445.2023.2276140
Ahsan Maqsood, Ruba Munir, Gadah Albasher, Murtaza Sayed, Raziya Nadeem, Nazish Jahan, Amna Muneer, Muhammad Yaseen, Muhammad Zahid, Fazila Younas, Saima Noreen
{"title":"Synthesis of hybrid layered double hydroxides (HLDH) and application as adsorbent for removal of direct sky-blue dye","authors":"Ahsan Maqsood, Ruba Munir, Gadah Albasher, Murtaza Sayed, Raziya Nadeem, Nazish Jahan, Amna Muneer, Muhammad Yaseen, Muhammad Zahid, Fazila Younas, Saima Noreen","doi":"10.1080/00986445.2023.2276140","DOIUrl":"https://doi.org/10.1080/00986445.2023.2276140","url":null,"abstract":"AbstractHybrid Layered Double Hydroxides (HLDH) are promising adsorption materials for water treatment due to their excellent anion exchange capacities, abundance of active sites, and eco-friendliness. HLDH was synthesized utilizing the co-precipitation technique in this work to demonstrate its applicability for the removal of direct sky-blue dye via an adsorption procedure. The effects of pH, dose, contact time, initial dye concentration, and temperature on the direct sky-blue dye adsorption efficiency were thoroughly investigated. The adsorbents were analyzed using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), energy dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET). Under the best conditions, the maximum adsorption capacity has been achieved for Mg–Cr–Cl (42.95 mg/g) > Zn–Al–CO3 (39.76 mg/g) > Mg–Fe–Cl (38.08 mg/g). The adsorption of dyes on Mg–Cr–Cl, Zn–Al–CO3, and Mg–Fe–Cl followed a pseudo-second-order kinetic model and exhibited Langmuir-type monolayer adsorption. The influence of temperature was studied to determine the thermodynamic parameters. The estimated results showed spontaneous and exothermic adsorption processes. Electrolyte enhances the adsorption capacity to some extent, while surfactants block the sites, thus reducing the adsorption capacity. The maximum desorption of dye was influenced by the sodium hydroxide solution. The research described here might be utilized to create novel adsorbents with improved adsorption capacities for preserving the aquatic environment.Keywords: Adsorption–desorptiondirect sky-blue dyeMg–Cr–Cl HLDHMg–Fe–Clthermodynamic parametersZn–Al–CO3 AcknowledgmentThe authors would like to extend their sincere appreciation to the acknowledgment; research supporting project (RSP-2023/95, King Saud University, Riyadh, Saudi Arabia).Author contribution statementAhsan Maqsood: Methodology, Writing- original draft, Ruba Munir: Methodology, Formal analysis, acquisition of data, Saima Noreen: Supervision, Conceptualization, Formal analysis, Resources, Gadah Albasher: Conceptualization, Resources, Writing-review& editing, Amna Muneer: Statistical analysis, Writing-review & editing, Murtaza Sayed: execution, Writing-review& editing, Muhammad Yaseen: interpretation, Writing-review& editing, Fazila Younas: Conceptualization, interpretation, Raziya Nadeem: Conceptualization, interpretation, Muhammad Zahid: execution, Writing-review& editing, Nazish Jahan: execution, Writing-review& editing.Consent for publicationAll authors have read and approved this manuscript.Consent to participateNot applicable.Data availabilityData will be made available on reasonable request.Disclosure statementThe authors declare no competing interests.Ethical approvalResearch does not involve Human Participants or/and Animals.","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135475333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of fluid flow and heat-moisture transfer mechanism in packed bed based on double-diffusion model 基于双扩散模型的填料床流体流动及热湿传递机理模拟
4区 工程技术
Chemical Engineering Communications Pub Date : 2023-10-26 DOI: 10.1080/00986445.2023.2272183
Xin Li, Kaimin Yang, Yuancheng Wang, Xinming Du
{"title":"Simulation of fluid flow and heat-moisture transfer mechanism in packed bed based on double-diffusion model","authors":"Xin Li, Kaimin Yang, Yuancheng Wang, Xinming Du","doi":"10.1080/00986445.2023.2272183","DOIUrl":"https://doi.org/10.1080/00986445.2023.2272183","url":null,"abstract":"AbstractBased on the discrete element method (DEM), four packed beds composed of soybean kernels with diameters of 6.4, 6.8, 7.4 mm, and the mixture of three kinds of particles were established. Then, a double-diffusion heat and mass transfer model between the grain pile and the interstitial air was established based on the local mass and thermal non-equilibrium (LMTNE) mechanism. Finally, employing particle-resolved computational fluid dynamics (PRCFD), the heat and mass transfer between the grain kernels and air during the drying process in the four packed beds were numerically resolved. It was found that the packed bed formed by stacking particles of different diameters had a minimum porosity of 0.4547. The radial porosity of the packed bed oscillates and decreases toward the central axis, while the tortuosity of the airflow path oscillates and decays toward the periphery. The mass transfer Biot number for soybean kernels with diameters of 6.4, 6.8, and 7.4 mm were 2.38 × 106, 2.44 × 106, and 2.53 × 106, respectively. This indicates that the mass transfer rate in the grain pile primarily depends on the magnitude of the moisture diffusion coefficient within the grain kernels. Compared with mass diffusion, thermal diffusion occurs much faster, which results in temperature gradients in packed beds only existing in the first 5 min of drying, and the drying rate in the early stage is higher than that in the later stage. Most importantly, the airflow characteristics, heat and moisture content are not in local equilibrium in the packed bed, and should be considered when designing drying systems.Keywords: Biot numberdouble-diffusionheat-moisture coupling transferporositysoybeantortuosity Disclosure statementThe authors declare that they have no conflicts of interest.Additional informationFundingThis study was supported by the Scientific and Technological Innovation Project for Youth of Shandong Provincial Colleges and Universities (Grant No. 2019KJH012). The Plan of Guidance and Cultivation for Young Innovative Talents of Shandong Provincial Colleges and Universities.","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136381746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling spinel oxide based-photocatalytic degradation of organic pollutants from industrial wastewater 氧化尖晶石基光催化降解工业废水中有机污染物的模拟
4区 工程技术
Chemical Engineering Communications Pub Date : 2023-10-17 DOI: 10.1080/00986445.2023.2269526
Sajda S. Alsaedi, Seba Saeed Mohammed, Alyaa Esam Mahdi, Zainab Y. Shnain, Hasan Sh. Majdi, Adnan A. AbdulRazak, Asawer A. Alwasiti
{"title":"Modeling spinel oxide based-photocatalytic degradation of organic pollutants from industrial wastewater","authors":"Sajda S. Alsaedi, Seba Saeed Mohammed, Alyaa Esam Mahdi, Zainab Y. Shnain, Hasan Sh. Majdi, Adnan A. AbdulRazak, Asawer A. Alwasiti","doi":"10.1080/00986445.2023.2269526","DOIUrl":"https://doi.org/10.1080/00986445.2023.2269526","url":null,"abstract":"AbstractRapid population growth has resulted in rapid growth in industrialization to meet various human needs. As a result of this, huge volume of effluent is being generated from the industrial processes and released into the water bodies. These anthropogenic activities are often detrimental to human and aquatic lives. In this study, a modeling approach to evaluate the photocatalytic degradation of organic pollutants from industrial wastewater using spinel oxide is investigated. Four machine learning algorithms namely, linear regression, decision tree ensemble, medium Gaussian support vector machine, and exponential Gaussian process regression were employed. The parametric analysis of the predictors (particle size of the spinel oxides, the initial dye concentration, the amount of photocatalysts, the band gap, and the irradiation time) and the targeted output of the photocatalytic degradation efficiency shows that a non-linear relationship exists between the predictors and the targeted output. This was further confirmed by the linear regression model with R2 of 0.220. Besides, the decision tree ensemble and medium Gaussian support vector machine regression offer poor performances in predicting the photocatalytic degradation efficiency as indicated by R2 of 0.420 and 0.490, respectively. A superior performance in predicting the photocatalytic degradation efficiency was displayed by the exponential Gaussian process regression with R2 of 0.991.Keywords: Degradationdyemachine learningspinel oxidesupport vector machinewastewater AcknowledgmentsThe authors acknowledge the support of Department of Chemical Engineering, University of Technology, Iraq.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136032662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Application of integrated molecular distillation-adsorption process for deacidification and recovery of vitamin E and carotenoids from palm oil 分子蒸馏-吸附一体化工艺在棕榈油中维生素E和类胡萝卜素脱酸回收中的应用
4区 工程技术
Chemical Engineering Communications Pub Date : 2023-10-16 DOI: 10.1080/00986445.2023.2269527
Eluize Vayne Maziero, Maurício Dalla Costa Rodrigues da Silva, Cristiano Augusto Ballus, Eduardo Hiromitsu Tanabe, Daniel Assumpção Bertuol
{"title":"Application of integrated molecular distillation-adsorption process for deacidification and recovery of vitamin E and carotenoids from palm oil","authors":"Eluize Vayne Maziero, Maurício Dalla Costa Rodrigues da Silva, Cristiano Augusto Ballus, Eduardo Hiromitsu Tanabe, Daniel Assumpção Bertuol","doi":"10.1080/00986445.2023.2269527","DOIUrl":"https://doi.org/10.1080/00986445.2023.2269527","url":null,"abstract":"AbstractPalm oil is a natural source of phytonutrients such as vitamin E and carotenoids. However, these high-value compounds are lost during conventional refining. These phytonutrients can be separated and recovered from crude palm oil (CPO) through methods which prevents the degradation of these compounds. This study evaluated the integrated approach of molecular distillation and adsorption, with the aim of deacidifying and separating vitamin E and carotenoids from CPO, allowing their recovery. Wiped-film molecular distillation (WFMD) was used for deacidification and vitamin E enrichment, the best results were obtained at 200 °C and 21 mL/min. The distillate stream was enriched 937.8% in vitamin E, and the residue stream (named deacidified palm oil - DAPO), enriched in carotenoids, reached 0.1% free fatty acids (FFA). Integration with the adsorption process achieved a carotenoids removal of 79.4% from the DAPO stream. Moreover, the kinetic constant (k2) of adsorption increased by around 87% for DAPO, a result attributed to the absence of fat crystals on the adsorbent surface verified by scanning electron microscopy. Notably, the integrated process approach used is an innovative methodology for the vegetable oil industry presenting an alternative route that allows the preservation and recovery of phytonutrients, and the oil deacidification.Keywords: Bioactive compoundsenrichmentfood ingredientsintegrated processpalm oilphytonutrients AcknowledgmentsThe authors thank Bioesans Biotechnological Products S.A. for financial support and Itochu Chemicals America Inc. for adsorbent donation. The following Brazilian agencies supported this study: Foundation for the Support of Research in the State of Rio Grande do Sul (FAPERGS); National Council for Scientific and Technological Development (CNPq); Coordination for the Improvement of Higher Education Personnel (CAPES); and Secretariat of Economic Development, Science and Technology of the State of Rio Grande do Sul (SDECT).Disclosure statementThe authors declare no competing interests.","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136114594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosorption of tetracycline antibiotics by Lactarius deliciosus biomass 美味乳酸菌生物量对四环素类抗生素的吸附
4区 工程技术
Chemical Engineering Communications Pub Date : 2023-10-10 DOI: 10.1080/00986445.2023.2266684
Aslı Göçenoğlu Sarıkaya, Bilgen Osman, Elif Tümay Özer
{"title":"Biosorption of tetracycline antibiotics by <i>Lactarius deliciosus</i> biomass","authors":"Aslı Göçenoğlu Sarıkaya, Bilgen Osman, Elif Tümay Özer","doi":"10.1080/00986445.2023.2266684","DOIUrl":"https://doi.org/10.1080/00986445.2023.2266684","url":null,"abstract":"ABSTARCTIn this study, Lactarius deliciosus biomass was used as a biosorbent for the biosorption of three tetracycline antibiotics, chlortetracycline (CTC), doxycycline (DC), and tetracycline (TC), from aqueous solution. The biomass was characterized by Fourier Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The effect of biosorbent amount (0.01–0.1g), pH (3.0–8.0), initial antibiotic concentration (30–300 mg/L for CTC and DC, and 5–50 mg/L for TC), contact time (2–120 min), and temperature (7 °C, 16 °C, 25 °C) were investigated. The maximum biosorption amount of CTC, DC, and TC was 216.4 ± 4.2 mg/g (pH 4.0), 121.2 ± 6.2 mg/g (pH 3.0), and 23.2 ± 2.1 mg/g (pH 7.0) at 25 °C, respectively. The biosorption amount of tetracyclines decreased with increasing temperature demonstrating that the biosorption processes were exothermic. The biosorptions of tetracyclines were favorable with negative ΔG° values for all temperatures. CTC and DC biosorption processes were well fitted to the pseudo-second-order kinetic and Freundlich isotherm models. TC biosorption data obeyed the pseudo-first-order kinetic model. Tap and drinking water samples spiked with tetracyclines were used as real samples for biosorption. The results showed that L. deliciosus biomass could be effectively used as a biosorbent for tetracycline antibiotics with high adsorption capacities.Keywords: BiosorptionbiomassLactarius deliciosusremovaltetracyclinesthermodynamic Disclosure statementThe authors confirm that this article content has no conflict of interest.Data availabilityThe authors declare that the data supporting the findings of this study are available within the paper and supporting information.Additional informationFundingThis work was supported by the Research Foundation of Bursa Uludag University (Project No: FHIZ-2021-590).","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136353055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal violet adsorption onto modified biosorbent prepared from agricultural waste: kinetics, isotherm and thermodynamic studies 由农业废弃物制备的改性生物吸附剂对结晶紫的吸附:动力学、等温线和热力学研究
4区 工程技术
Chemical Engineering Communications Pub Date : 2023-10-10 DOI: 10.1080/00986445.2023.2266677
Betul Tuba Gemici
{"title":"Crystal violet adsorption onto modified biosorbent prepared from agricultural waste: kinetics, isotherm and thermodynamic studies","authors":"Betul Tuba Gemici","doi":"10.1080/00986445.2023.2266677","DOIUrl":"https://doi.org/10.1080/00986445.2023.2266677","url":null,"abstract":"AbstractThe present study investigated crystal violet removal by modifying the chestnut shell with a chemical activation method. For this purpose, H2SO4 and NaOH pretreatments were applied to the chestnut shell and the pretreatment method that gave the best performance under the same conditions was determined. The best adsorption efficiency was achieved with the NaOH pretreatment (99.06%) and the crystal violet adsorption reached equilibrium within 60 min. After selecting the best chemical activation method, the modified chestnut shell was characterized before and after adsorption (FTIR and SEM). Furthermore, the effects of parameters such as pH, initial crystal violet concentration, adsorbent dosage, temperature, and contact time were observed. Moreover, isotherm, kinetics and thermodynamics of the adsorption process were researched in detail. The best results were obtained with the Langmuir isotherm model (R2=0.99) and the pseudo-second-order kinetic model (R2=0.99). Thermodynamic parameters showed that the adsorption process is spontaneous, endothermic and feasible.Keywords: Adsorptioncrystal violetisothermkineticsmodified chestnut shellthermodynamic Authors’ contributionsB.T.G. conducted all the experiments and data analyses and prepared original draft.Disclosure statementThe author declares that there is no conflict of interest.","PeriodicalId":9725,"journal":{"name":"Chemical Engineering Communications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136352734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信