Cardiovascular Toxicology最新文献

筛选
英文 中文
Environmental Heavy Metal Exposure and Associated Cardiovascular Diseases in Light of the Triglyceride Glucose Index. 从甘油三酯血糖指数看环境重金属暴露与相关心血管疾病
IF 3.4 3区 医学
Cardiovascular Toxicology Pub Date : 2024-11-01 Epub Date: 2024-08-30 DOI: 10.1007/s12012-024-09913-x
Muhammad Bilal Sardar, Mohsin Raza, Ammara Fayyaz, Muhammad Asfandyar Nadir, Zain Ali Nadeem, Muhammad Babar
{"title":"Environmental Heavy Metal Exposure and Associated Cardiovascular Diseases in Light of the Triglyceride Glucose Index.","authors":"Muhammad Bilal Sardar, Mohsin Raza, Ammara Fayyaz, Muhammad Asfandyar Nadir, Zain Ali Nadeem, Muhammad Babar","doi":"10.1007/s12012-024-09913-x","DOIUrl":"10.1007/s12012-024-09913-x","url":null,"abstract":"<p><p>Cardiovascular diseases (CVD), primarily ischemic heart disease and stroke, remain leading global health burdens. Environmental risk factors have a major role in the development of CVD, particularly exposure to heavy metals. The Triglyceride Glucose Index (TyG), a measure of insulin resistance and CVD risk, is the primary focus of this study, which summarizes the most recent findings on the effects of lead (Pb), arsenic (As), and cadmium (Cd) on CVD risk. A higher risk of CVD is correlated with an elevated TyG index, which has been linked to insulin resistance. Exposure to Cd is associated with disturbance of lipid metabolism and oxidative stress, which increases the risk of CVD and TyG. Exposure reduces insulin secretion and signaling, which raises the TyG index and causes dyslipidemia. Pb exposure increases the risk of CVD and TyG index via causing oxidative stress and pancreatic β-cell destruction. These results highlight the need of reducing heavy metal exposure by lifestyle and environmental modifications in order to lower the risk of CVD. To comprehend the mechanisms and create practical management plans for health hazards associated with heavy metals, more study is required.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1301-1309"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis. 大黄霉素通过抑制 p38 MAPK/HSP90/c-Jun/c-Fos 通路介导的细胞凋亡减轻多柔比星诱发的心肌损伤
IF 3.4 3区 医学
Cardiovascular Toxicology Pub Date : 2024-11-01 Epub Date: 2024-09-06 DOI: 10.1007/s12012-024-09917-7
Yong Chen, Yadan Tu, Jin Cao, Yigang Wang, Yi Ren
{"title":"Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis.","authors":"Yong Chen, Yadan Tu, Jin Cao, Yigang Wang, Yi Ren","doi":"10.1007/s12012-024-09917-7","DOIUrl":"10.1007/s12012-024-09917-7","url":null,"abstract":"<p><p>Doxorubicin (Dox) has been limited in clinical application due to its cardiac toxicity that varies with the dose. This study aimed to explore how Rhein modulates Dox-induced myocardial toxicity. The general condition and echocardiographic changes of mice were observed to evaluate cardiac function and structure, with myocardial cell injury and apoptosis checked by TUNEL and HE staining. The ELISA assessed markers of myocardial damage and inflammation. The TCMSP and SwissTargetPrediction databases were used to retrieve Rhein's targets while GeneCards was used to find genes related to Dox-induced myocardial injury. Intersection genes were analyzed by Protein-Protein Interaction Networks. The core network genes underwent GO and KEGG enrichment analysis using R software. Western blot was used to detect protein expression. Compared to the Dox group, there was no remarkable difference in heart mass /body mass ratio in the Rhein+Dox group. However, heart mass/tibia length increased. Mice in the Rhein+Dox group had significantly increased LVEF, LVPWs, and LVFS compared to those in the Dox group. Myocardial cell damage, inflammation, and apoptosis significantly reduced in the Rhein+Dox group compared to the model group. Eleven core network genes were selected. Further, Rhein+Dox group showed significantly downregulated expression of p38/p-p38, HSP90AA1, c-Jun/p-c-Jun, c-Fos/p-c-Fos, Bax, and cleaved-caspase-3/caspase-3 while Bcl-2 expression significantly upregulated compared to the Dox group. The study suggests that Rhein mediates cardioprotection against Dox-induced myocardial injury, at least partly, by influencing multiple core genes in the MAPK signaling pathway to inhibit myocardial cell apoptosis.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1139-1150"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Efficacy of Selenium Pre-treatment in Mitigating Cadmium-Induced Cardiotoxicity in Zebrafish (Danio rerio). 硒预处理在减轻斑马鱼(Danio rerio)镉诱导的心脏毒性方面的疗效
IF 3.4 3区 医学
Cardiovascular Toxicology Pub Date : 2024-11-01 Epub Date: 2024-08-30 DOI: 10.1007/s12012-024-09910-0
Rachael M Heuer, Priscila Falagan-Lotsch, Jessica Okutsu, Madison Deperalto, Rebekka R Koop, Olaedo G Umeh, Gabriella A Guevara, Md Imran Noor, Myles A Covington, Delia S Shelton
{"title":"Therapeutic Efficacy of Selenium Pre-treatment in Mitigating Cadmium-Induced Cardiotoxicity in Zebrafish (Danio rerio).","authors":"Rachael M Heuer, Priscila Falagan-Lotsch, Jessica Okutsu, Madison Deperalto, Rebekka R Koop, Olaedo G Umeh, Gabriella A Guevara, Md Imran Noor, Myles A Covington, Delia S Shelton","doi":"10.1007/s12012-024-09910-0","DOIUrl":"10.1007/s12012-024-09910-0","url":null,"abstract":"<p><p>Cardiovascular diseases are a rampant public health threat. Environmental contaminants, such as Cadmium (Cd), a toxic metal, are risk factors for cardiovascular diseases. Given that human exposure to Cd is increasing, there is a need for therapies to ameliorate Cd toxicity. Selenium (Se), an essential trace element, has been proposed to rescue the effects of Cd toxicity, with mixed effects. Se's narrow therapeutic window necessitates precise dosing to avoid toxicity. Here, we assessed the effects of various waterborne Cd and Se concentrations and sequences on cardiac function using zebrafish (Danio rerio). We showed that Cd induced pericardial edemas and modified heart rates in zebrafish larvae in a concentration-dependent manner. To identify the therapeutic range of Se for Cd-induced cardiotoxicity, zebrafish embryos were treated with 0, 10, 50, 100, 150, or 200 μg/L Se for 1-4 days prior to exposure to 2.5 and 5 μg/L Cd. We found that a 50 µg/L Se pre-treatment before 2.5 μg/L Cd, but not 5 μg/L Cd, reduced the prevalence of pericardial edemas and ameliorated Cd-induced bradycardia in zebrafish. Zebrafish exposed to 10 and 50 μg/L of Se for up to 4 days showed typical heart morphology, whereas other Se-exposed and control fish presented pericardial edemas. Longer Se pre-treatment durations led to fewer incidences of pericardial edemas. Overall, this study highlights the importance of optimizing Se concentrations and pre-treatment periods to harness its protective effects against Cd-induced cardiotoxicity. These findings provide insights into potential therapeutic strategies for reducing Cd-related cardiovascular damage in humans.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1287-1300"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sevoflurane Affects Myocardial Autophagy Levels After Myocardial Ischemia Reperfusion Injury via the microRNA-542-3p/ADAM9 Axis. 七氟醚通过 microRNA-542-3p/ADAM9 轴影响心肌缺血再灌注损伤后的心肌自噬水平
IF 3.4 3区 医学
Cardiovascular Toxicology Pub Date : 2024-11-01 Epub Date: 2024-08-10 DOI: 10.1007/s12012-024-09908-8
Jiying Ao, Xueting Zhang, Degang Zhu
{"title":"Sevoflurane Affects Myocardial Autophagy Levels After Myocardial Ischemia Reperfusion Injury via the microRNA-542-3p/ADAM9 Axis.","authors":"Jiying Ao, Xueting Zhang, Degang Zhu","doi":"10.1007/s12012-024-09908-8","DOIUrl":"10.1007/s12012-024-09908-8","url":null,"abstract":"<p><p>This research focused on investigating the effects of sevoflurane (Sev) on myocardial autophagy levels after myocardial ischemia reperfusion (I/R) injury via the microRNA-542-3p (miR-542-3p)/ADAM9 axis. Mice underwent 30 min occlusion of the left anterior descending coronary (LAD) followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC) staining. Cardiac function was examined by echocardiography. Cardiac markers and oxidative stress factors were evaluated by ELISA. Autophagy-associated factors were detected by western blot. Relationship between miR-542-3p and ADAM9 was tested by dual-luciferase reporter gene assay, RT-qPCR, and western blot. Sev treatment ameliorated cardiac dysfunction, myocardial oxidative stress, and histopathological damages, decreased myocardial infarction size and myocardial apoptotic cells after myocardial I/R injury. Sev treatment elevated miR-542-3p expression and decreased ADAM9 expression in myocardial tissues after myocardial I/R injury. miR-542-3p overexpression could enhance the ameliorative effects of Sev on myocardial injury and myocardial autophagy in I/R mice. miR-542-3p targeted and negatively regulated ADAM9 expression. ADAM9 overexpression reversed the ameliorative effects of miR-542-3p up-regulation on myocardial injury and myocardial autophagy in Sev-treated I/R mice. Sev treatment could ameliorate myocardial injury and myocardial autophagy in I/R mice, mediated by mechanisms that include miR-542-3p up-regulation and ADAM9 down-regulation.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1226-1235"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Mobility Group Box 1 and Cardiovascular Diseases: Study of Act and Connect. 高流动性群体方框 1 与心血管疾病:行动与联系研究。
IF 3.4 3区 医学
Cardiovascular Toxicology Pub Date : 2024-11-01 Epub Date: 2024-09-06 DOI: 10.1007/s12012-024-09919-5
Rufaida Wasim, Aditya Singh, Anas Islam, Saad Mohammed, Aamir Anwar, Tarique Mahmood
{"title":"High Mobility Group Box 1 and Cardiovascular Diseases: Study of Act and Connect.","authors":"Rufaida Wasim, Aditya Singh, Anas Islam, Saad Mohammed, Aamir Anwar, Tarique Mahmood","doi":"10.1007/s12012-024-09919-5","DOIUrl":"10.1007/s12012-024-09919-5","url":null,"abstract":"<p><p>Cardiovascular disease is the deadly disease that can result in sudden death, and inflammation plays an important role in its onset and progression. High mobility group box 1 (HMGB1) is a nuclear protein that regulates transcription, DNA replication, repair, and nucleosome assembly. HMGB1 is released passively by necrotic tissues and actively secreted by stressed cells. Extracellular HMGB1 functions as a damage associated molecular patterns molecule, producing numerous redox forms that induce a range of cellular responses by binding to distinct receptors and interactors, including tissue inflammation and regeneration. Extracellular HMGB1 inhibition reduces inflammation and is protective in experimental models of myocardial ischemia/reperfusion damage, myocarditis, cardiomyopathies caused by mechanical stress, diabetes, bacterial infection, or chemotherapeutic drugs. HMGB1 administration following a myocardial infarction followed by permanent coronary artery ligation improves cardiac function by stimulating tissue regeneration. HMGB1 inhibits contractility and produces hypertrophy and death in cardiomyocytes, while also stimulating cardiac fibroblast activity and promoting cardiac stem cell proliferation and differentiation. Maintaining normal nuclear HMGB1 levels, interestingly, protects cardiomyocytes from apoptosis by limiting DNA oxidative stress, and mice with HMGB1cardiomyocyte-specific overexpression are partially protected from cardiac injury. Finally, elevated levels of circulating HMGB1 have been linked to human heart disease. As a result, following cardiac damage, HMGB1 elicits both detrimental and helpful responses, which may be due to the formation and stability of the various redox forms, the particular activities of which in this context are mostly unknown. This review covers recent findings in HMGB1 biology and cardiac dysfunction.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1268-1286"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circular RNA circ_0002984 Facilitates the Proliferation and Migration of Ox-LDL-Induced Vascular Smooth Muscle Cells via the Let-7a-5p/KLF5 Pathway. 环状 RNA circ_0002984 通过 Let-7a-5p/KLF5 通路促进氧化-LDL 诱导的血管平滑肌细胞的增殖和迁移
IF 3.4 3区 医学
Cardiovascular Toxicology Pub Date : 2024-11-01 Epub Date: 2024-08-24 DOI: 10.1007/s12012-024-09911-z
Feng Chen, Ruilai Jiang, Xiufeng Yu
{"title":"Circular RNA circ_0002984 Facilitates the Proliferation and Migration of Ox-LDL-Induced Vascular Smooth Muscle Cells via the Let-7a-5p/KLF5 Pathway.","authors":"Feng Chen, Ruilai Jiang, Xiufeng Yu","doi":"10.1007/s12012-024-09911-z","DOIUrl":"10.1007/s12012-024-09911-z","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) play an important role in the progression of atherosclerosis (AS). This study aimed to explore the exact role and mechanism of circ_0002984 in oxidized low-density lipoprotein (ox-LDL)-mediated human vascular smooth muscle cells (HVSMCs). The model of smooth muscle cell phenotype switching was constructed by treating HVSMCs with ox-LDL. The levels of circ_0002984, let-7a-5p, and kruppel-like factor 5 (KLF5) were measured by quantitative real-time PCR or western blot assay. Cell proliferation, migration, and apoptosis were detected by Cell Counting Kit-8 (CCK-8), EdU staining, wound healing assay, transwell assay, and flow cytometry. The expression of cleaved-caspase-3 and KLF5 was examined by western blot. The relationship between let-7a-5p and circ_0002984 or KLF5 was verified by dual-luciferase reporter assay or RIP assay. The results showed that circ_0002984 and KLF5 were up-regulated, while let-7a-5p was down-regulated in AS patients and ox-LDL-disposed HVSMCs. Silence of circ_0002984 suppressed proliferation and migration, and promoted apoptosis in ox-LDL-stimulated HVSMCs. Moreover, circ_0002984 sponged let-7a-5p to regulate the proliferation, migration, and apoptosis in ox-LDL-resulted HVSMCs. In addition, KLF5 was a target of let-7a-5p and its overexpression reversed the effect of let-7a-5p on the proliferation, migration, and apoptosis in ox-LDL-treated HVSMCs. Also, circ_0002984 positively regulated KLF5 expression by absorbing let-7a-5p. The promotion effect of circ_0002984 on the proliferation and migration of ox-LDL-treated HVSMCs was reversed by KLF5 silencing. Taken together, depletion of circ_0002984 inhibited the proliferation and migration of ox-LDL-stimulated HVSMCs, which might be achieved by modulating the let-7a-5p/KLF5 axis.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1253-1267"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myocarditis Following Pembrolizumab Plus Axitinib, and Belzutifan Plus Lenvatinib for Renal Cell Carcinoma: A Case Report. 彭博利珠单抗联合阿西替尼和贝珠单抗联合伦伐替尼治疗肾细胞癌后的心肌炎:病例报告。
IF 3.4 3区 医学
Cardiovascular Toxicology Pub Date : 2024-11-01 Epub Date: 2024-07-31 DOI: 10.1007/s12012-024-09906-w
Andrea Villatore, Carlo Bosi, Chiara Pomaranzi, Antonio Cigliola, Valentina Tateo, Chiara Mercinelli, Davide Vignale, Stefania Rizzo, Andrea Necchi, Giovanni Peretto
{"title":"Myocarditis Following Pembrolizumab Plus Axitinib, and Belzutifan Plus Lenvatinib for Renal Cell Carcinoma: A Case Report.","authors":"Andrea Villatore, Carlo Bosi, Chiara Pomaranzi, Antonio Cigliola, Valentina Tateo, Chiara Mercinelli, Davide Vignale, Stefania Rizzo, Andrea Necchi, Giovanni Peretto","doi":"10.1007/s12012-024-09906-w","DOIUrl":"10.1007/s12012-024-09906-w","url":null,"abstract":"<p><p>Cardiac toxicity is an adverse event of several classes of anti-cancer drugs. Herein, we present the case of a 52-year-old woman with metastatic renal cell carcinoma (RCC), previously treated with debulking surgery, pembrolizumab (immune checkpoint inhibitor) in combination with axitinib (tyrosine kinase inhibitor (TKI)), followed by lenvatinib (TKI) and belzutifan (HIF-2α inhibitor), who developed myocarditis proven by cardiac magnetic resonance and endomyocardial biopsy. The case was notable for reporting a not-yet described adverse event during treatment with belzutifan plus lenvatinib, the etiology of which was of unobvious determination given the pre-exposure to pembrolizumab, a known cause of drug-related myocarditis. We surmise that myocarditis was a delayed adverse event related to pembrolizumab (8 months after treatment interruption), although we emphasize that only attentive monitoring of cardiac adverse events of patients exposed to belzutifan and lenvatinib in the context of large clinical trials may rule out any causal implication of these drugs.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1168-1173"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes from Hypoxic Pretreatment ADSCs Ameliorate Cardiac Damage Post-MI via Activated circ-Stt3b/miR-15a-5p/GPX4 Signaling and Decreased Ferroptosis. 低氧预处理 ADSCs 的外泌体通过激活 circ-Stt3b/miR-15a-5p/GPX4 信号传导和减少铁凋亡改善心肌梗死后的心脏损伤
IF 3.4 3区 医学
Cardiovascular Toxicology Pub Date : 2024-11-01 Epub Date: 2024-08-27 DOI: 10.1007/s12012-024-09915-9
Jili Liu, Zhaolin Wang, Anhua Lin, Na Zhang
{"title":"Exosomes from Hypoxic Pretreatment ADSCs Ameliorate Cardiac Damage Post-MI via Activated circ-Stt3b/miR-15a-5p/GPX4 Signaling and Decreased Ferroptosis.","authors":"Jili Liu, Zhaolin Wang, Anhua Lin, Na Zhang","doi":"10.1007/s12012-024-09915-9","DOIUrl":"10.1007/s12012-024-09915-9","url":null,"abstract":"<p><p>Accumulation studies confirmed that oxidative stress caused by ischemia after myocardial infarction (MI) is an important cause of ventricular remodeling. Exosome secretion through hypoxic pretreatment adipose-derived mesenchymal stem cells (ADSCs) ameliorates myocardial damaging post-MI. However, if ADSCs exosome can improve the microenvironment and ameliorate cardiac damage post-MI still unknown. Next-generation sequencing (NGS) was used to study abnormally expressed circRNAs in hypoxic pretreatment ADSC exosomes (HExos) and untreated ADSC exosomes (Exos). Bioinformatics and luciferase reporting were used to elucidate interaction correlation related to circRNA, mRNA, and miRNA. HL-1 cells were used to analyze the reactive oxygen species (ROS) and apoptosis under hypoxic conditions using immunofluorescence and flow cytometry. An MI mouse model was constructed and the therapeutic effect of Exos was determined using immunohistochemistry, immunofluorescence, and ELISA. The results showed that HExos had a more pronounced treatment effect than ADSC Exos on cardiac damage amelioration after MI. NGS showed that circ-Stt3b plays a role in HExo-mediated cardiac damage repair after MI. Overexpression of circ-Stt3b decreased apoptosis, ROS level, and inflammatory factor expression in HL-1 cells under hypoxic conditions. Bioinformatics and luciferase reporting data validated miR-15a-5p and GPX4 as downstream circ-Stt3b targets. GPX4 downregulation or miR-15a-5p overexpression reversed protective effect regarding circ-Stt3b upon HL-1 cells after exposure to a hypoxic microenvironment. Overexpression of circ-Stt3b increased the treatment effect of ASDSC Exos on cardiac damage amelioration after MI. Taken together, the study results demonstrated that Exos from hypoxic pretreatment ADSCs ameliorate cardiac damage post-MI through circ-Stt3b/miR-15a-5p/GPX4 signaling activation and decreased ferroptosis.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1215-1225"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TRAF3IP3 Blocks Mitophagy to Exacerbate Myocardial Injury Induced by Ischemia-Reperfusion. TRAF3IP3阻碍丝裂细胞吞噬,加剧缺血再灌注引起的心肌损伤
IF 3.4 3区 医学
Cardiovascular Toxicology Pub Date : 2024-11-01 Epub Date: 2024-09-06 DOI: 10.1007/s12012-024-09916-8
Zhongcheng Wei, Juan Liu, Hailang Liu, Aixia Jiang
{"title":"TRAF3IP3 Blocks Mitophagy to Exacerbate Myocardial Injury Induced by Ischemia-Reperfusion.","authors":"Zhongcheng Wei, Juan Liu, Hailang Liu, Aixia Jiang","doi":"10.1007/s12012-024-09916-8","DOIUrl":"10.1007/s12012-024-09916-8","url":null,"abstract":"<p><p>To uncover the possible role of TRAF3IP3 in the progression of myocardial infarction (MI), clarify its role in mitophagy and mitochondrial function, and explore the underlying mechanism. GEO chip analysis, RT-qPCR, and LDH release assay were used to detect the expression of TRAF3IP3 in tissues and cells and its effects on cell damage. Immunostaining and ATP product assays were performed to examine the effects of TRAF3IP3 on mitochondrial function. Co-IP, CHX assays, Immunoblot and Immunostaining assays were conducted to determine the effects of TRAF3IP3 on mitophagy. TRAF3IP3 was highly expressed in IR rats and HR-induced H9C2 cells. TRAF3IP3 knockdown can alleviate H/R-induced H9C2 cell damage. In addition, TRAF3IP3 knockdown can induce mitophagy, thus enhancing mitochondrial function. We further revealed that TRAF3IP3 can promote the degradation of NEDD4 protein. Moreover, TRAF3IP3 knockdown suppressed myocardial injury in I/R rats. TRAF3IP3 blocks mitophagy to exacerbate myocardial injury induced by I/R via mediating NEDD4 expression.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1204-1214"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of Clozapine-Induced Cardiomyopathy and Its Mechanism. 探索氯氮平诱发心肌病及其机制
IF 3.4 3区 医学
Cardiovascular Toxicology Pub Date : 2024-11-01 Epub Date: 2024-08-17 DOI: 10.1007/s12012-024-09909-7
Shangyu Zhang, Pengyue Jin, Li Yang, Yujie Zeng, Yongguo Li, Renkuan Tang
{"title":"Exploration of Clozapine-Induced Cardiomyopathy and Its Mechanism.","authors":"Shangyu Zhang, Pengyue Jin, Li Yang, Yujie Zeng, Yongguo Li, Renkuan Tang","doi":"10.1007/s12012-024-09909-7","DOIUrl":"10.1007/s12012-024-09909-7","url":null,"abstract":"<p><p>In this study, by pooling the clinical data of patients who died with a history of long-term clozapine use and by examining their hearts, it was found that long-term clozapine use can lead to cardiomyopathy and that its presentation resembles arrhythmogenic cardiomyopathy (ACM), i.e., it exhibits a predominantly right ventricular fatty infiltration with mild left ventricular damage. The transcriptomic data of rat cardiomyocytes after clozapine intervention were analyzed by transcriptomic approach to explore the causes of clozapine cardiomyopathy. The cause of clozapine cardiomyopathy was then explored by a transcriptomic approach, which revealed that its clozapine action on cardiomyocytes enriched cardiomyocyte-related differential genes in biological processes such as muscle development and response to hypoxia, as well as pathways such as fatty acid metabolism and cellular autophagy. Transcriptomic analysis showed that Egr1, Egr2, ler2, Jun, Mapk9, Nr1d2, Atf3, Bhlhe40, Crem, Cry1, Cry2, Dbp were hub genes for clozapine injury to the myocardium, and that these genes may play an important role in the myocardial ACM-like changes caused by clozapine. Combined with the results of pathological examination and transcriptomic analysis, it can be concluded that the long-term action of clozapine on cardiomyocytes leads to cellular autophagy and subsequent structural remodeling of the heart, and in the remodeling affects fatty acid metabolism, which eventually leads to ACM-like changes.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1192-1203"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信