{"title":"Transforming the Dark into Light: A Siglec-9 Switch.","authors":"Hinrich Abken","doi":"10.1158/2326-6066.CIR-24-0429","DOIUrl":"10.1158/2326-6066.CIR-24-0429","url":null,"abstract":"<p><p>Tumor-associated immune repression dampens the success of T-cell therapy for cancer by a plethora of inhibitory mechanisms including aberrant glycosylation. In this issue, Eisenberg and colleagues show that IFNγ induces hyper-sialylation of cancer cells and that this acts as the \"checkpoint\" through binding to the inhibitory molecule Siglec-9 on immune cells. A chimeric Siglec-9 \"switch\" receptor converts the suppressive signal into a stimulatory signal, thereby restoring T-cell responses in the tumor tissue, which has multiple implications for the use of adoptive cell therapy in cancer. See related article by Eisenberg et al., p. 1380 (3).</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1310"},"PeriodicalIF":8.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Sampling of Highlights from the Literature.","authors":"","doi":"10.1158/2326-6066.CIR-12-10-WWR","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-12-10-WWR","url":null,"abstract":"","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":"12 10","pages":"1309"},"PeriodicalIF":8.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The E3 Ubiquitin Ligase FBXO38 Maintains the Antitumor Function of Natural Killer Cells by Sustaining IL15R Signaling.","authors":"Yongjing Shi, Xiaodong Zheng, Hui Peng, Chenqi Xu, Rui Sun, Zhigang Tian, Haoyu Sun, Xianwei Wang","doi":"10.1158/2326-6066.CIR-23-1061","DOIUrl":"10.1158/2326-6066.CIR-23-1061","url":null,"abstract":"<p><p>Natural killer (NK) cells are the main innate antitumor effector cells but their function is often constrained in the tumor microenvironment. It has been reported that the E3 ligase FBXO38 accelerates PD-1 degradation in tumor-infiltrating T cells to unleash their cytotoxic function. In this study, we found that the transcriptional levels of FBXO38 in intratumoral NK cells of patients with cancer and tumor-bearing mice were significantly lower than in peritumoral NK cells. Conditional knockout of FBXO38 in NK cells accelerated tumor growth and increased tumor metastasis. FBXO38 deficiency resulted in impaired proliferation and survival of tumor-infiltrating NK (TINK) cells. Mechanistically, FBXO38 deficiency enhanced TGF-β signaling, including elevating expression of Smad2 and Smad3, which suppressed expression of the transcription factor Eomes and further reduced expression of surface IL15Rβ and IL15Rγc on NK cells. Consequently, FBXO38 deficiency led to TINK cell hyporesponsiveness to IL15. Consistent with these observations, FBXO38 mRNA expression was positively correlated with the proliferation of TINK cells in multiple human tumors. To study the therapeutic potential of FBXO38, mice bearing human tumors were treated with FBXO38 overexpressed human primary NK cells and showed a significant reduction in tumor size and prolonged survival. In conclusion, our results suggest that FBXO38 sustains NK-cell expansion and survival to promote antitumor immunity and have potential therapeutic implications as they suggest FBXO38 could be harnessed to enhance NK cell-based cancer immunotherapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1438-1451"},"PeriodicalIF":8.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hypoxia-Induced Long Noncoding RNA HIF1A-AS2 Regulates Stability of MHC Class I Protein in Head and Neck Cancer.","authors":"Tsai-Tsen Liao, Yu-Hsien Chen, Zih-Yu Li, An-Ching Hsiao, Ya-Li Huang, Ruo-Xin Hao, Shyh-Kuan Tai, Pen-Yuan Chu, Jing-Wen Shih, Hsing-Jien Kung, Muh-Hwa Yang","doi":"10.1158/2326-6066.CIR-23-0622","DOIUrl":"10.1158/2326-6066.CIR-23-0622","url":null,"abstract":"<p><p>Intratumoral hypoxia not only promotes angiogenesis and invasiveness of cancer cells but also creates an immunosuppressive microenvironment that facilitates tumor progression. However, the mechanisms by which hypoxic tumor cells disseminate immunosuppressive signals remain unclear. In this study, we demonstrate that a hypoxia-induced long noncoding RNA HIF1A Antisense RNA 2 (HIF1A-AS2) is upregulated in hypoxic tumor cells and hypoxic tumor-derived exosomes in head and neck squamous cell carcinoma (HNSCC). Hypoxia-inducible factor 1 alpha (HIF1α) was found to directly bind to the regulatory region of HIF1A-AS2 to enhance its expression. HIF1A-AS2 reduced the protein stability of major histocompatibility complex class I (MHC-I) by promoting the interaction between the autophagy cargo receptor neighbor of BRCA1 gene 1 (NBR1) protein and MHC-I, thereby increasing the autophagic degradation of MHC-I. In HNSCC samples, the expression of HIF1A-AS2 was found to correlate with hypoxic signatures and advanced clinical stages. Patients with high HIF1α and low HLA-ABC expression showed reduced infiltration of CD8+ T cells. These findings define a mechanism of hypoxia-mediated immune evasion in HNSCC through downregulation of antigen-presenting machinery via intracellular or externalized hypoxia-induced long noncoding RNA.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1468-1484"},"PeriodicalIF":8.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zahraa Rahal, Yuejiang Liu, Fuduan Peng, Sujuan Yang, Mohamed A. Jamal, Manvi Sharma, Hannah Moreno, Ashish V. Damania, Matthew C. Wong, Mathew C. Ross, Ansam Sinjab, Tieling Zhou, Minyue Chen, Inti Tarifa Reischle, Jiping Feng, Chidera Chukwuocha, Elizabeth Tang, Camille Abaya, Jamie K. Lim, Cheuk Hong Leung, Heather Y. Lin, Nathaniel Deboever, Jack J. Lee, Boris Sepesi, Don L. Gibbons, Jennifer A. Wargo, Junya Fujimoto, Linghua Wang, Joseph F. Petrosino, Nadim J. Ajami, Robert R. Jenq, Seyed Javad Moghaddam, Tina Cascone, Kristi Hoffman, Humam Kadara
{"title":"Inflammation mediated by gut microbiome alterations promotes lung cancer development and an immunosuppressed tumor microenvironment","authors":"Zahraa Rahal, Yuejiang Liu, Fuduan Peng, Sujuan Yang, Mohamed A. Jamal, Manvi Sharma, Hannah Moreno, Ashish V. Damania, Matthew C. Wong, Mathew C. Ross, Ansam Sinjab, Tieling Zhou, Minyue Chen, Inti Tarifa Reischle, Jiping Feng, Chidera Chukwuocha, Elizabeth Tang, Camille Abaya, Jamie K. Lim, Cheuk Hong Leung, Heather Y. Lin, Nathaniel Deboever, Jack J. Lee, Boris Sepesi, Don L. Gibbons, Jennifer A. Wargo, Junya Fujimoto, Linghua Wang, Joseph F. Petrosino, Nadim J. Ajami, Robert R. Jenq, Seyed Javad Moghaddam, Tina Cascone, Kristi Hoffman, Humam Kadara","doi":"10.1158/2326-6066.cir-24-0469","DOIUrl":"https://doi.org/10.1158/2326-6066.cir-24-0469","url":null,"abstract":"Accumulating evidence indicates that the gut microbiome influences cancer progression and therapy. We recently showed that progressive changes in gut microbial diversity and composition are closely associated with tobacco-associated lung adenocarcinoma (LUAD) in a human-relevant mouse model. Furthermore, we demonstrated that the loss of the antimicrobial protein Lcn2 in these mice, exacerbates pro-tumor inflammatory phenotypes while further reducing microbial diversity. Yet, how gut microbiome alterations impinge on LUAD development remains poorly understood. Here, we investigated the role of gut microbiome changes in LUAD development using fecal microbiota transfer and delineated a pathway by which gut microbiome alterations incurred by loss of Lcn2 fostered the proliferation of pro-inflammatory bacteria of the genus Alistipes, triggering gut inflammation. This inflammation propagated systemically, exerting immunosuppression within the tumor microenvironment, augmenting tumor growth through an IL-6-dependent mechanism and dampening response to immunotherapy. Corroborating our preclinical findings, we found that patients with LUAD with a higher relative abundance of Alistipes species in the gut showed diminished response to neoadjuvant immunotherapy. These insights reveal the role of microbiome-induced inflammation in LUAD and present new potential targets for interception and therapy.","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":"72 1","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Darel Martínez Bedoya, Eliana Marinari, Suzel Davanture, Luis Castillo Cantero, Sarah Erraiss, Millicent Dockerill, Sofia Barluenga, Nicolas Winssinger, Karl Schaller, Philippe Bijlenga, Shahan Momjian, Christel Voize, Stéphanie R. Tissot, Lana E. Kandalaft, Philippe Hammel, Pierre Cosson, Paul R. Walker, Valérie Dutoit, Denis Migliorini
{"title":"PTPRZ1-targeting RNA CAR T cells exert antigen-specific and bystander antitumor activity in glioblastoma","authors":"Darel Martínez Bedoya, Eliana Marinari, Suzel Davanture, Luis Castillo Cantero, Sarah Erraiss, Millicent Dockerill, Sofia Barluenga, Nicolas Winssinger, Karl Schaller, Philippe Bijlenga, Shahan Momjian, Christel Voize, Stéphanie R. Tissot, Lana E. Kandalaft, Philippe Hammel, Pierre Cosson, Paul R. Walker, Valérie Dutoit, Denis Migliorini","doi":"10.1158/2326-6066.cir-23-1094","DOIUrl":"https://doi.org/10.1158/2326-6066.cir-23-1094","url":null,"abstract":"The great success of chimeric antigen receptor (CAR) T-cell therapy in the treatment of patients with B-cell malignancies has prompted its translation to solid tumors. In the case of glioblastoma (GBM), clinical trials have shown modest efficacy, but efforts to develop more effective anti-GBM CAR T cells are ongoing. In this study, we selected PTPRZ1 as a target for GBM treatment. We isolated six anti-human PTPRZ1 scFv from a human phage display library and produced 2nd generation CAR T cells in an RNA format. Patient-derived GBM PTPRZ1-knock-in cell lines were used to select the CAR construct that showed high cytotoxicity while consistently displaying high CAR expression (471_28z). CAR T cells incorporating 471_28z were able to release IFN-γ, IL-2, TNF-α, Granzyme B, IL-17A, IL-6, and soluble FasL, and displayed low tonic signaling. Additionally, they maintained an effector memory phenotype after in vitro killing. In addition, 471_28z CAR T cells displayed strong bystander killing against PTPRZ1-negative cell lines after pre-activation by PTPRZ1-positive tumor cells but did not kill antigen-negative non-tumor cells. In an orthotopic xenograft tumor model using NSG mice, a single dose of anti-PTPRZ1 CAR T cells significantly delayed tumor growth. Taken together, these results validate PTPRZ1 as a GBM target and prompt the clinical translation of anti-PTPRZ1 CAR T cells.","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":"75 1","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Dark Knight: Functional Reprogramming of Neutrophils in the Pathogenesis of Colitis-Associated Cancer","authors":"Sreya Ghosh, Ivan Zanoni","doi":"10.1158/2326-6066.cir-23-0642","DOIUrl":"https://doi.org/10.1158/2326-6066.cir-23-0642","url":null,"abstract":"Neutrophils are the primary myeloid cells that are recruited to inflamed tissues, and they are key players during colitis, being also present within the tumor microenvironment during the initiation and growth of colon cancer. Neutrophils fundamentally serve to protect the host against microorganism invasion, but during cancer development, they can become protumoral and lead to tumor initiation, growth, and eventually, metastasis—hence, playing a dichotomic role for the host. Protumoral neutrophils in cancer patients can be immunosuppressive and serve as markers for disease progression but their characteristics are not fully defined. In this review, we explore the current knowledge on how neutrophils in the gut fluctuate between an inflammatory or immunosuppressive state and how they contribute to tumor development. We describe neutrophils’ antitumoral and protumoral effects during inflammatory bowel diseases and highlight their capacity to provoke the advent of inflammation-driven colorectal cancer. We present the functional ambivalence of the neutrophil populations within the colon tumor microenvironment, which can be potentially exploited to establish therapies that will prevent, or even reverse, inflammation-dependent colon cancer incidence in high-risk patients.","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":"67 1","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Devanshi A. Nayak, Abigail L. Sedlacek, Anthony R. Cillo, Simon C. Watkins, Robert J. Binder
{"title":"CD91 and its ligand gp96 confer cross-priming capabilities to multiple APCs during immune responses to nascent, emerging tumors","authors":"Devanshi A. Nayak, Abigail L. Sedlacek, Anthony R. Cillo, Simon C. Watkins, Robert J. Binder","doi":"10.1158/2326-6066.cir-24-0326","DOIUrl":"https://doi.org/10.1158/2326-6066.cir-24-0326","url":null,"abstract":"During cancer immunosurveillance, dendritic cells (DCs) play a central role in orchestrating T-cell responses against emerging tumors. Capture of miniscule amounts of antigen along with tumor-initiated costimulatory signals can drive maturation of DCs. Expression of CD91 on DCs is essential in cross-priming of T-cell responses in the context of nascent tumors. Multiple DC and macrophage subsets express CD91 and engage tumor-derived gp96 to initiate antitumor immune responses, yet the specific CD91+ antigen-presenting cells (APCs) that are required for T-cell cross-priming during cancer immunosurveillance are unknown. In this study, we determined that CD91 expression on type 1 conventional DCs (cDC1) is necessary for cancer immunosurveillance. Specifically, CD91-expressing cDC1 were found to capture the CD91 ligand gp96 from tumors and, upon migration to the lymph nodes, distribute gp96 among lymph-node resident APCs. However, cDC1 that captured tumor-derived gp96 only provided early tumor control, while sustained and long-term tumor rejection was bestowed to the host by other gp96+ cross-priming DCs. We further found that the CD91-induced transcriptome in APCs promoted cross-priming of T-cell responses while downregulating immune regulatory pathways. Our results show an elaborate and synchronized division of labor of APCs in the successful elimination of cancer cells via CD91. We predict that the specialized functions of APC subsets can be harnessed for immunotherapy of disease.","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":"202 1","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy J. Sears, Meghana S. Pagadala, Andrea Castro, Ko-Han Lee, JungHo Kong, Kairi Tanaka, Scott M. Lippman, Maurizio Zanetti, Hannah Carter
{"title":"Integrated germline and somatic features reveal divergent immune pathways driving response to immune checkpoint blockade","authors":"Timothy J. Sears, Meghana S. Pagadala, Andrea Castro, Ko-Han Lee, JungHo Kong, Kairi Tanaka, Scott M. Lippman, Maurizio Zanetti, Hannah Carter","doi":"10.1158/2326-6066.cir-24-0164","DOIUrl":"https://doi.org/10.1158/2326-6066.cir-24-0164","url":null,"abstract":"Immune Checkpoint Blockade (ICB) has revolutionized cancer treatment, however the mechanisms determining patient response remain poorly understood. Here, we used machine learning to predict ICB response from germline and somatic biomarkers and interpreted the learned model to uncover putative mechanisms driving superior outcomes. Patients with higher infiltration of T follicular helper cells had responses even in the presence of defects in the class-I Major Histocompatibility Complex (MHC-I). Further investigation uncovered different ICB responses in tumors when responses were reliant on MHC-I versus MHC-II neoantigens. Despite similar response rates, MHC-II reliant responses were associated with significantly longer durable clinical benefit (Discovery: Median OS=63.6 vs. 34.5 months P=0.0074; Validation: Median OS=37.5 vs. 33.1 months, P=0.040). Characteristics of the tumor immune microenvironment reflected MHC neoantigen reliance, and analysis of immune checkpoints revealed LAG3 as a potential target in MHC-II but not MHC-I reliant responses. This study highlights the value of interpretable machine learning models in elucidating the biological basis of therapy responses.","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":"14 1","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ju-Fang Chang, Nils Wellhausen, Nils W Engel, Jack H Landmann, Caitlin R Hopkins, January Salas-McKee, Adham S Bear, Mehmet E Selli, Sangya Agarwal, Julie K Jadlowsky, Gerald P Linette, Saar Gill, Carl H June, Joseph A Fraietta, Nathan Singh
{"title":"Identification of Core Techniques That Enhance Genome Editing of Human T Cells Expressing Synthetic Antigen Receptors.","authors":"Ju-Fang Chang, Nils Wellhausen, Nils W Engel, Jack H Landmann, Caitlin R Hopkins, January Salas-McKee, Adham S Bear, Mehmet E Selli, Sangya Agarwal, Julie K Jadlowsky, Gerald P Linette, Saar Gill, Carl H June, Joseph A Fraietta, Nathan Singh","doi":"10.1158/2326-6066.CIR-24-0251","DOIUrl":"10.1158/2326-6066.CIR-24-0251","url":null,"abstract":"<p><p>Genome editing technologies have seen remarkable progress in recent years, enabling precise regulation of exogenous and endogenous genes. These advances have been extensively applied to the engineering of human T lymphocytes, leading to the development of practice changing therapies for patients with cancer and the promise of synthetic immune cell therapies for a variety of nonmalignant diseases. Many distinct conceptual and technical approaches have been used to edit T-cell genomes, however targeted assessments of which techniques are most effective for manufacturing, gene editing, and transgene expression are rarely reported. Through extensive comparative evaluation, we identified methods that most effectively enhance engineering of research-scale and preclinical T-cell products at critical stages of manufacturing.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1136-1146"},"PeriodicalIF":8.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}